Mathematical Methods for Physics and Engineering : A Comprehensive Guide

(lu) #1

SPECIAL FUNCTIONS


evaluated using l’Hˆopital’s rule, or alternatively we may calculate the relevant


integral directly.


Evaluate the integral
∫b

a

Jν^2 (αx)xdx.

Ignoring the integration limits for the moment,

J^2 ν(αx)xdx=


1


α^2


Jν^2 (u)u du,

whereu=αx. Integrating by parts yields


I=



Jν^2 (u)udu=^12 u^2 Jν^2 (u)−


Jν(u)J′ν(u)u^2 du.

Now Bessel’s equation (18.73) can be rearranged as


u^2 Jν(u)=ν^2 Jν(u)−uJν′(u)−u^2 Jν′′(u),

which, on substitution into the expression forI,gives


I=^12 u^2 Jν^2 (u)−


J′ν(u)[ν^2 Jν(u)−uJ′ν(u)−u^2 Jν′′(u)]du

=^12 u^2 Jν^2 (u)−^12 ν^2 J^2 ν(u)+^12 u^2 [Jν′(u)]^2 +c.

Sinceu=αx, the required integral is given by


∫b

a

Jν^2 (αx)xdx=

1


2


[(


x^2 −

ν^2
α^2

)


Jν^2 (αx)+x^2 [J′ν(αx)]^2

]b

a

, (18.89)


which gives the normalisation condition for Bessel functions of the first kind.


Since the Bessel functionsJν(x) possess the orthogonality property (18.88), we

may expand any reasonable functionf(x), i.e. one obeying the Dirichlet conditions


discussed in chapter 12, in the interval 0≤x≤bas a sum of Bessel functions of


a given (non-negative) orderν,


f(x)=

∑∞

n=0

cnJν(αnx), (18.90)

provided that theαnare chosen such thatJν(αnb) = 0. The coefficientscnare then


given by


cn=

2
b^2 Jν^2 +1(αnb)

∫b

0

f(x)Jν(αnx)xdx. (18.91)

Theintervalistakentobe0≤x≤b, as then one need only ensure that the


appropriate boundary condition is satisfied atx=b, since the boundary condition


atx= 0 is met automatically.

Free download pdf