SPECIAL FUNCTIONS
Show that theth spherical Bessel function is given by
f(x)=(−1)x
(
1
x
d
dx
)
f 0 (x), (18.106)
wheref(x)denotes eitherj(x)orn(x).
The recurrence relation (18.93) for Bessel functions of the first kind reads
Jν+1(x)=−xν
d
dx
[
x−νJν(x)
]
.
Thus, on settingν=+^12 and rearranging, we find
x−^1 /^2 J+3/ 2 (x)=−x
d
dx
[
x−^1 /^2 J+1/ 2
x
]
,
which on using (18.102) yields the recurrence relation
j+1(x)=−x
d
dx
[x−j(x)].
We now change+1→and iterate this result:
j(x)=−x−^1
d
dx
[x−+1j− 1 (x)]
=−x−^1
d
dx
{
x−+1(−1)x−^2
d
dx
[
x−+2j− 2 (x)
]
}
=(−1)^2
x
x
d
dx
{
1
x
d
dx
[
x−+2j− 2 (x)
]
}
=···
=(−1)x
(
1
x
d
dx
)
j 0 (x).
This is the expression forj(x) as given in (18.106). One may prove the result (18.106) for
n(x) in an analogous manner by settingν=−^12 in the recurrence relation (18.92) for
Bessel functions of the first kind and using the relationshipY+1/ 2 (x)=(−1)+1J−− 1 / 2 (x).
Using result (18.106) and the expressions (18.104) and (18.105), one quickly
finds, for example,
j 1 (x)=
sinx
x^2
−
cosx
x
, j 2 (x)=
(
3
x^3
−
1
x
)
sinx−
3cosx
x^2
,
n 1 (x)=−
cosx
x^2
−
sinx
x
, n 2 (x)=−
(
3
x^3
−
1
x
)
cosx−
3sinx
x^2
.
Finally, we note that the orthogonality properties of the spherical Bessel functions
follow directly from the orthogonality condition (18.88) for Bessel functions of
the first kind.
18.7 Laguerre functions
Laguerre’s equation has the form
xy′′+(1−x)y′+νy= 0; (18.107)