QUANTUM OPERATORS
IfA|an〉=a|an〉for allN 1 ≤n≤N 2 ,then
|ψ〉=∑N^2n=N 1dn|an〉satisfiesA|ψ〉=a|ψ〉for any set ofdi.For a general state|ψ〉,
|ψ〉=∑∞n=0cn|an〉,wherecn=〈an|ψ〉. (19.10)This can also be expressed as the operator identity,
1=∑∞n=0|an〉〈an|, (19.11)in the sense that
|ψ〉=1|ψ〉=∑∞n=0|an〉〈an|ψ〉=∑∞n=0cn|an〉.It also follows that
1=〈ψ|ψ〉=(∞
∑m=0c∗m〈am|)(∞
∑n=0cn|an〉)=∑∞m,nc∗mcnδmn=∑∞n=0|cn|^2.
(19.12)Similarly, the expectation value of the physical variable corresponding toAis
〈ψ|A|ψ〉=∑∞m,nc∗m〈am|A|an〉cn=∑∞m,nc∗m〈am|an|an〉cn=∑∞m,nc∗mcnanδmn=∑∞n=0|cn|^2 an. (19.13)19.1.1 Commutation and commutatorsAs has been noted above, the productABof two linear operators may or may
not be equal to the productBA.Thatis
AB|ψ〉is not necessarily equal toBA|ψ〉.IfAandB are both purely multiplicative operators, multiplication byf(r)
andg(r) say, then clearly the order of the operations is immaterial, the result
|f(r)g(r)ψ〉being obtained in both cases. However, consider a case in whichA
is the differential operator∂/∂xandBis the operator ‘multiply byx’. Then the
wavefunction describingAB|ψ〉is
∂
∂x(xψ(x))=ψ(x)+x∂ψ
∂x,