The Art and Craft of Problem Solving

(Ann) #1

118 CHAPTER 4 THREE IMPORTANT CROSSOVER TACTICS



  1. If a vertex is of the form (peak, trough), it is isolated (has degree zero). The
    vertex (g, q) is an example of this.
    Now consider the connected component of r that contains the vertex (a,s). This is a
    subgraph of r [it is not all of r, since (g, q) and (q,g) are isolated]. By the handshake
    lemma (page 111), the sum of the degrees of the vertices of this subgraph must be
    even. Since the only two vertices with odd degree are (a,s) and (s,a) , this subgraph
    must contain (s,a) as well. Thus there is a path from (a,s) to (s,a). This argument
    will certainly generalize to any mountain range, so we are done. _


s r q p o n m k j h g f e
.. ., .. -1-.. r .. -, .... 1-.. T .. -1-.. � .. ., .. -1-.. r .. -I " .. ,-.. , .. - 1 -.. r" .. ., .. -,

.. i" .. -I I I I I I I I I I I I I I I
...... - .. 'i .. -." .. i' .. -... ".- .. i" .. -... ".- .. "'i .. -." ... -.. -.....

L .. J .. .. I .... L .. J ....^1 .. L .. _I .... I .... (^1) .. 1 ....... .J .... I
.. .- .. "i I I .... I ,- .. r I .. -, .. "I I I I I I I
.- .. , .. -," .. .- .. 1 .... I
-----------I I I I I I I I -I I ----I I
.. r .. -, .... ,- .. 'T .. -," .. ,. .. ., .... I
.. j" .. -I I I I I I I
." ... - .. i' .. -." .. i" .. "'i ....
L .. J .. .. _I .... L .. .J .. 1 .. L .. I ....^1 .. (^1) .. I .... L .. J .... I
d � .. � .... :- .. T .. -: .... :-.. � .. -: .... � .. � .... :- .. T .. -: .... :-.. � .. -: .... � .. � ....
C r""""" ,-.. r .. -, .... .- .. , .. -," .. r" .. ., .... ,- .. r .. -. .... ,- .. 'T .. -,"" .. ., .... I
b
a I .............................................. I I I I I I I I I -
I .......................... I I I I I I -_ .. .. I
abcd e f g h j k m n op qrs
In the end, we solved this hard problem with a very simple parity analysis. Of
course, we first needed the insight of constructing a graph, and the crux move of defin­
ing the vertices and edges in a very clever way. The moral of the story: just about
anything can be analyzed with graphs!
Problems and Exercises
In these problems, a graph is not a multigraph (no loops or multiple edges) unless specifically so
stated.
4.1. 8 Show that every graph contains two vertices of
equal degree.
4.1. 9 Given six people, show that either three are mu­
tual friends, or three are complete strangers to one an-
other. (Assume that "friendship" is mutual; i.e., if you
are my friend then I must be your friend.)
4.1.10 Seventeen people are at a party. It turns out
that for each pair of people present, exactly one of

Free download pdf