25.3 The Probability Distribution and the Molecular Partition Function 1059
0123456 7
Curve representing the
function exp( 2 h^2 nx^2 /8ma^2 )
Value of term
nx (quantum number)
Figure 25.2 A Graphical Representation of the Translational Partition Function
(Schematic).
in Exercise 25.14. The factorszyandzzare similar tozxexcept for the replacement
ofabyborc, so the translational partition function can be written as
ztr
(
2 πm
h^2 β
) 3 / 2
abc
(
2 πm
h^2 β
) 3 / 2
V (25.3-18)
whereVabc, the volume of the box containing the gas. The thermodynamic proper-
ties of a dilute gas are independent of the shape of the container in which it is confined,
so we will use the second version of Eq. (25.3-18).
The parameterβcan now be evaluated. We substitute Eq. (25.3-18) into Eq. (25.3-7),
assuming thatzelis equal to a constant:
U
N
(
∂
∂β
ln(ztrzel)
)
V
(
∂
∂β
ln(ztr)
)
V
+
(
∂
∂β
ln(zel)
)
V
(
∂
∂β
ln(ztr)
)
V
+ 0
(
∂
∂β
ln
((
2 πm
h^2 β
) 3 / 2
V
))
V
−
3
2
dln(1/β)
dβ
3
2
dln(β)
dβ
3
2 β
(25.3-19)
To make Eq. (25.3-19) agree with Eq. (25.3-8) we set
β
1
kBT
(25.3-20)
The translational partition function is now
ztr
(
2 πmkBT
h^2
) 3 / 2
V (any gaseous substance) (25.3-21)