28.2 Crystal Vibrations 1167
EXAMPLE28.4
CalculateνDfor copper, which has a density of 8.96 g cm−^1. The speed of sound in copper at
room temperature is 4760 m s−^1 for the longitudinal wave and 2325 m s−^1 for the transverse
waves.
Solution
The molar volume isVm63 .456 g mol−^1
8 .96 g cm−^3 7 .082 cm^3 mol−^1 7. 082 × 10 −^6 m^3 mol−^1N
V
6. 02214 × 1023 mol−^1
7. 082 × 10 −^6 m^3 mol−^1 8. 503 × 1028 m−^3We take as an average value ofcc1
3[
c(longitudinal)+ 2 c(transverse)]1
3[
(4760 m s−^1 )+2(2325 m s−^1 )]
3137 m s−^1ν^3 D3 Nc^3
4 πV
(3)(8. 503 × 1028 m−^3 )(3137 m s−^1 )^3
4 π
6. 2645 × 1038 s−^3νD(6. 2645 ×1038 s−^3 )^1 /^3 8. 557 × 1012 s−^1If this value is multiplied by 2π, the result is 5.38× 1013 radians s−^1 , in rough agreement
with the value in Figure 28.8.Exercise 28.5
Find the value of the speed of sound in copper that corresponds to the cutoff frequency in
Figure 28.8, 4. 6 × 1013 radians s−^1.The canonical partition function is given by Eq. (28.2-3) except that each normal
mode has its own frequency,νi.Ze−U^0 /kBT∏^3 N
i 1⎛
⎝
∑∞
vi 0e−hνivi/kBT⎞
⎠e−U^0 /kBT∏^3 N
i 1zi (28.2-19)whereziis the vibrational partition function for normal mode numberi:zi∑∞
v 0e−hνiv/kBT1
1 −e−hνi/kBT(28.2-20)
The logarithm of the partition function of the crystal is given byln(Z)−U 0
kBT+
∑^3 N
i 1ln(zi)−U 0
kBT−
∑^3 N
i 1ln(
1 −e−hνi/kBT