1204 28 The Structure of Solids, Liquids, and Polymers
Since all microstates are assumed equally probable,Pis proportional toΩand we can
write a formula for the entropy change:∆SS(stretched)−S(equilibrium)k[ln(P′)−ln(P)]kB∑
iNiln(
p′i
pi)
NkB∑
ipiln(
p′i
pi)
(28.9-18)
where we have used the fact thatpiNi/N.
We pretend thatx,y, andzrange continuously and replace the sum by an integral:∆SNkB∫
pln(
p′
p)
dxdydz (28.9-19)where the integral is over all values ofx,y, andz. From Eq. (28.7-18) and Eq. (28.9-13),ln(
p′
p)
3
2 na^2[
−x^2 (α^2 −1)−(y^2 +z^2 )(
1
α− 1
)]
(28.9-20)
When Eq. (28.9-20) is substituted into Eq. (28.9-19), we obtain∆S
3 NkB
2 na^2[
−〈x^2 〉n(α^2 −1)−(
〈y^2 〉n+〈z^2 〉n)( 1
α− 1
)]
−
NkB
2(
α^2 +2
α− 3
)
(28.9-21)
where we have used Eq. (28.7-11) for the equilibrium value of〈x^2 〉n, which is also
equal to〈y^2 〉nand〈z^2 〉n. Using Eqs. (28.9-21) and (28.9-12), we can write an equation
of state for ideal rubber:f−T(
∂S
∂L
)
T−
T
L 0
(
∂S
∂α)
TNkBT
L 0(
α−1
α^2)
(28.9-22)
This equation of state agrees fairly well with experiment for values ofαno larger
than 3.^44EXAMPLE28.16
Derive an expression for the reversible work done in stretching a piece of ideal rubber at
constant temperature.
Solution
Letα′be the final value of the extent of elongation.dwfdL
NkBT
L(
α−
1
α^2)
dLNkBT(
α−
1
α^2)
dαwNkBT∫α′1(
α−
1
α^2)
dα
NkBT
2(
α′^2 +
2
α′
− 3)(^44) F. T. Wall,op. cit., Ch. 16 (note 37).