C A Short Table of Integrals 1259
∫∞
0
x^2 e−ax
2
dx
1
4
√
π
a^3
, a> 0
∫∞
0
x^3 e−ax
2
dx
1
2 a^2
, a> 0
∫∞
0
x^2 ne−ax
2
dx
(1)(3)(5)...(2n−1)
2 n+^1 an+^1 /^2
√
π, a> 0
∫∞
0
x^2 n+^1 e−ax
2
dx
n!
2 an+^1
, a> 0
C.3 The Error Function
The error function is defined by
erf(z)
2
√
π
∫z
0
e−t
2
dt
So that
erf(0) 0
erf(1/
√
2) 0. 683 ...
erf(∞) 1
erf(− 1 /
√
2)− 0. 683 ···
erf(−∞)− 1
The following identity is sometimes useful:
∫z
0
t^2 e−at
2
dt
√
π
4 a^3 /^2
erf(
√
az)−
z
2 a
e−az
2
The error function cannot be expressed in closed form (as a formula with a finite number
of terms) for values ofzother than 0 or∞. The following asymptotic formula^2 gives
values of the error function for large arguments:
erf(z) 1 −
e−z
2
√
πz
(
1 +
∑∞
m 1
(−1)m(1)(3)...(2m−1)
(2z^2 )m
)
(^2) M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, National Bureau of Standards, Washington, DC, 1964, p. 298.