C A Short Table of Integrals 1259
∫∞
0x^2 e−ax2
dx1
4
√
π
a^3, a> 0∫∞
0x^3 e−ax2
dx1
2 a^2, a> 0∫∞
0x^2 ne−ax2
dx(1)(3)(5)...(2n−1)
2 n+^1 an+^1 /^2√
π, a> 0∫∞
0x^2 n+^1 e−ax2
dxn!
2 an+^1, a> 0C.3 The Error Function
The error function is defined byerf(z)2
√
π∫z0e−t2
dtSo thaterf(0) 0erf(1/√
2) 0. 683 ...
erf(∞) 1erf(− 1 /√
2)− 0. 683 ···
erf(−∞)− 1The following identity is sometimes useful:∫z0t^2 e−at
2
dt√
π
4 a^3 /^2erf(√
az)−z
2 ae−az
2The error function cannot be expressed in closed form (as a formula with a finite number
of terms) for values ofzother than 0 or∞. The following asymptotic formula^2 gives
values of the error function for large arguments:erf(z) 1 −e−z2
√
πz(
1 +
∑∞
m 1(−1)m(1)(3)...(2m−1)
(2z^2 )m)
(^2) M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, National Bureau of Standards, Washington, DC, 1964, p. 298.