Physical Chemistry Third Edition

(C. Jardin) #1

C A Short Table of Integrals 1259


∫∞

0

x^2 e−ax

2
dx

1

4


π
a^3

, a> 0

∫∞

0

x^3 e−ax

2
dx

1

2 a^2

, a> 0

∫∞

0

x^2 ne−ax

2
dx

(1)(3)(5)...(2n−1)
2 n+^1 an+^1 /^2


π, a> 0

∫∞

0

x^2 n+^1 e−ax

2
dx

n!
2 an+^1

, a> 0

C.3 The Error Function

The error function is defined by

erf(z)

2


π

∫z

0

e−t

2
dt

So that

erf(0) 0

erf(1/


2) 0. 683 ...

erf(∞) 1

erf(− 1 /


2)− 0. 683 ···

erf(−∞)− 1

The following identity is sometimes useful:

∫z

0

t^2 e−at
2
dt


π
4 a^3 /^2

erf(


az)−

z
2 a

e−az
2

The error function cannot be expressed in closed form (as a formula with a finite number
of terms) for values ofzother than 0 or∞. The following asymptotic formula^2 gives
values of the error function for large arguments:

erf(z) 1 −

e−z

2

πz

(

1 +

∑∞

m 1

(−1)m(1)(3)...(2m−1)
(2z^2 )m

)

(^2) M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, National Bureau of Standards, Washington, DC, 1964, p. 298.

Free download pdf