Physical Chemistry Third Edition

(C. Jardin) #1

4.2 Fundamental Relations for Closed Simple Systems 161


Therefore
(
∂H
∂S

)

P,n

T (4.2-12)

and

(
∂H
∂P

)

S,n

V (4.2-13)

Using the Euler reciprocity relation, we obtain a second Maxwell relation:

(
∂T
∂P

)

S,n



(

∂V

∂S

)

P,n

(a Maxwell relation) (4.2-14)

EXAMPLE 4.2

Find an expression for (∂V /∂S)P,nfor an ideal gas with constant heat capacity.
Solution
For a reversible adiabatic process,

T 2
T 1



(
P 2
P 1

)nR/(CV+nR)

Drop the subscript 2:

TT 1

(
P
P 1

)nR/(CV+nR)

(
∂V
∂S

)

P,n



(
∂T
∂P

)

S,n


nR
CV+nR

T 1
PnR/ 1 (CV+nR)

PnR/(CV+nR)−^1


nR
CV+nR

T 1
PnR/ 1 (CV+nR)

PnR/(CV+nR)
1
P


nR
CV+nR

T
P


R
CV, m+R

T
P

Exercise 4.2
a.Evaluate (∂V /∂S)P,nfor 1.000 mol of helium (assumed ideal) at 1.000 atm and 298.15 K.
TakeCV, m 3 R/2.
b.Evaluate (∂V /∂S)P,nfor 2.000 mol of helium at 1.000 atm and 298.15 K. Explain the depen-
dence on the amount of substance.
Free download pdf