4.2 Fundamental Relations for Closed Simple Systems 161
Therefore
(
∂H
∂S
)
P,n
T (4.2-12)
and
(
∂H
∂P
)
S,n
V (4.2-13)
Using the Euler reciprocity relation, we obtain a second Maxwell relation:
(
∂T
∂P
)
S,n
(
∂V
∂S
)
P,n
(a Maxwell relation) (4.2-14)
EXAMPLE 4.2
Find an expression for (∂V /∂S)P,nfor an ideal gas with constant heat capacity.
Solution
For a reversible adiabatic process,
T 2
T 1
(
P 2
P 1
)nR/(CV+nR)
Drop the subscript 2:
TT 1
(
P
P 1
)nR/(CV+nR)
(
∂V
∂S
)
P,n
(
∂T
∂P
)
S,n
nR
CV+nR
T 1
PnR/ 1 (CV+nR)
PnR/(CV+nR)−^1
nR
CV+nR
T 1
PnR/ 1 (CV+nR)
PnR/(CV+nR)
1
P
nR
CV+nR
T
P
R
CV, m+R
T
P
Exercise 4.2
a.Evaluate (∂V /∂S)P,nfor 1.000 mol of helium (assumed ideal) at 1.000 atm and 298.15 K.
TakeCV, m 3 R/2.
b.Evaluate (∂V /∂S)P,nfor 2.000 mol of helium at 1.000 atm and 298.15 K. Explain the depen-
dence on the amount of substance.