4.5 Multicomponent Systems 183
However, the partial derivatives in this equation are not equal to any simple thermody-
namic variables as are the partial derivatives in Eq. (4.5-2). We therefore say that the
natural independent variablesfor the Gibbs energy areT,P,n 1 ,n 2 ,...,nc.
EXAMPLE4.17
Use an analogue of Eq. (B-7) of Appendix B to write a relation between (∂G/∂ni)T,V,n′
andμi.
Solution
(
∂G
∂ni
)
T,V,n′
(
∂G
∂ni
)
T,P,n′
+
(
∂G
∂P
)
T,n
(
∂P
∂ni
)
T,V,n′
μi+V
(
∂P
∂ni
)
T,V,n′
The internal energy, the enthalpy, and the Helmholtz energy have their own sets
of natural independent variables. From Eq. (4.5-3), Eq. (4.5-8), and the relation
GH−TS,
dHdG+TdS+SdT
dH−SdT+VdP+
∑c
i 1
μidni+TdS+SdT
dHTdS+VdP+
∑c
i 1
μidni (4.5-6)
The natural independent variables forHareS,P,n 1 ,n 2 ,...,nc. We can see from
Eq. (4.5-6) that
μi
(
∂H
∂ni
)
S,P,n′
(4.5-7)
Similarly, sinceUH−PV,
dUTdS−PdV+
∑c
i 1
μidni (4.5-8)
so that the natural independent variables forUareS,V,n 1 ,n 2 ,...,nc. Also
dA−SdT−VdP+
∑c
i 1
μidni (4.5-9)