308 7 Chemical Equilibrium
c.
T∆
⎛
⎝
−
(
G◦m−Hm,298◦ ◦
)
T
⎞
⎠(298.15 K)2(213.795JK−^1 mol−^1 )
− 2
(
197 .653JK−^1 mol−^1
)
− 205 .147JK−^1 mol−^1
(298.15 K)(− 0 .172863 kJ K−^1 mol−^1 )
− 51 .539 kJ mol−^1
∆G◦∆H◦ 298 −T∆
⎛
⎝
−
(
G◦m−H◦m,298◦
)
T
⎞
⎠
− 565 .990 kJ mol−^1 + 51 .539 kJ mol−^1
− 514 .451 kJ mol−^1
Exercise 7.1
a.Using Gibbs energy changes of formation from Table A.8, calculate∆G◦at 298.15 K for the
reaction
PCl 5 (g)PCl 3 (g)+Cl 2 (g)
b.Calculate∆H◦and∆S◦at 298.15 K for the same reaction.
c.Calculate∆G◦at 298.15 K for the same reaction using Eq. (7.1-15). Compare with the answer
of part a.
d.Calculate∆G◦at 298.15 K for the same reaction using values of−(G◦m−Hm,298◦ )/Tand
the value of∆H◦.
The Gibbs Energy Change at Fixed Composition
Using the identity that a sum of logarithms is equal to the logarithm of a product, we
write Eq. (7.1-12) in the form
(
∂G
∂ξ
)
T,P
∆G◦+RTln(Q) (7.1-16)
where
Qav 11 av 22 ···avcc
∏c
i 1
avii (7.1-17)
The notationΠdenotes a product of factors, just asΣdenotes a sum of terms. The
quantityQis called theactivity quotient. It is called a quotient because the factors for
reactants have negative exponents.