7.2 Reactions Involving Gases and Pure Solids or Liquids 311
and Eq. (7.1-20) for the equilibrium constant is
K
∏c
i 1
(
Pi,eq
P◦
)vi
(ideal gas reaction) (7.2-2)
EXAMPLE 7.3
Consider the reaction:
0 2NO 2 (g)−N 2 O 4 (g)
a.Calculate the value of∆G◦at 298.15 K.
b.Calculate the value ofKat 298.15 K.
c.Calculate the equilibrium pressure of a system that initially consists of 1.000 mol of N 2 O 4
and that is confined in a fixed volume of 24.46 L at 298.15 K. Assume ideal gases.
Solution
a.From the Gibbs energy changes of formation,
∆G◦ 2 ∆fG◦(NO 2 )−∆fG◦(N 2 O 4 )
(2)(51.258 kJ mol−^1 )−(97.787 kJ mol−^1 )
4 .729 kJ mol−^1
b.The equilibrium constant is
K
(
Peq(NO 2 )/P
) 2
Peq(N 2 O 4 )/P◦
exp
⎛
⎝ −4729 J mol
− 1
(
8 .3145 J K−^1 mol−^1
)
( 298 .15 K)
⎞
⎠
0. 148
c.Letαbe the degree of dissociation (the fraction of the initial N 2 O 4 that dissociates at
equilibrium).
Peq(NO 2 )
n(NO 2 )RT
V
(1.000 mol)(2α)RT
V
Peq(N 2 O 4 )
n(N 2 O 4 )RT
V
(1.000 mol)(1−α)RT
V
We now can write
K 0. 148
(2α)^2
1 −α
(1.000 mol)RT
P◦V
(2α)^2
1 −α
(1.000 mol)(8.3145 J K−^1 mol−^1 ) (298.15 K)
(100,000 Pa)(0.02446 m^3 )
4 α^2 (1.0135)
1 −α