7.6 The Temperature Dependence of Chemical Equilibrium. The Principle of Le Châtelier 337
Solution
∆H◦ 2 ∆fH◦(NO 2 )−∆fH◦(N 2 O 4 )2(33.095 kJ mol−^1 )+(−1)(9.179 kJ mol−^1 )
57 .011 kJ mol−^1
ln
(
K( 373 .15 K)
K( 298 .15 K)
)
−
57011 J mol−^1
8 .3145 J K−^1 mol−^1
[
1
373 .15 K
−
1
298 .15 K
]
4. 622
Using the value ofK(298.15 K) from Example 7.3,
K(373.15 K)K(298.15 K)e^4.^622
(0.148)(101.7) 14. 92
∆G◦(373.15 K)−RTln(K(373.15 K))
−(8.3145 J K−^1 mol−^1 )(373.15 K) ln(14.92)
−8390 J mol−^1 − 8 .39 kJ mol−^1
Exercise 7.18
Find the value ofKfor the reaction of Example 7.4 at 1000 K.
If the assumption of constant∆H◦is not sufficiently accurate, the next simplest
assumption is that the heat capacities are constant, so that
∆H◦(T)∆H◦(T 1 )+∆CP(T−T 1 ) (7.6-10)
When Eq. (7.6-10) is substituted into Eq. (7.6-4) and an integration is carried out from
T 1 toT 2 , the result is
ln
(
K(T 2 )
K(T 1 )
)
−
∆H◦(T 1 )
R
[
1
T 2
−
1
T 1
]
+
∆CP
R
[
ln
(
T 2
T 1
)
+
T 1
T 2
− 1
]
(7.6-11)
Exercise 7.19
a.Verify Eq. (7.6-11).
b.Using heat-capacity data from Table A.8 of Appendix A and assuming the heat capacities to
be temperature-independent, evaluateKand∆G◦for the reaction of Example 7.18 at 100◦C.
Calculate the percent difference between your value forKand that in Example 7.18.
This principle isnamedfor Henri Louis
Le Châtelier,1850–1936,aFrench
chemist.
The Principle of Le Châtelier
The behavior of a system at chemical equilibrium when subjected to a change in
temperature illustrates theprinciple of Le Châtelier. This principle states:If possible,