Physical Chemistry Third Edition

(C. Jardin) #1

17.4 The Orbitals of the Hydrogen-Like Atom 743


Table 17.3 Real Hydrogen-Like Energy Eigenfunctions

ψ 10 ψ 1 s

1


π

(

Z

a

) 3 / 2

e−Zr/a

ψ 20 ψ 2 s

1

4


2 π

(

Z

a

) 3 / 2 (

2 −

Zr
a

)

e−Zr/^2 a

ψ 21 xψ 2 px

1

4


2 π

(

Z

a

) 3 / 2 (

Zr
a

)

e−Zr/^2 asin(θ) cos(φ)

ψ 21 yψ 2 py

1

4


2 π

(

Z

a

) 3 / 2 (

Zr
a

)

e−Zr/^2 asin(θ) sin(φ)

ψ 210 ψ 2 pz

1

4


2 π

(

Z

a

) 3 / 2 (

Zr
a

)

e−Zr/^2 acos(φ)

ψ 300 ψ 3 s

1

18


3 π

(

Z

a

) 3 / 2 [

6 −

4 Zr
a

+

(

2 Zr
3 a

) 2 ]

e−Zr/^3 a

ψ 310 ψ 3 pz


2

81


π

(

Z

a

) 3 / 2 (

6 Zr
a


Z^2 r^2
a^2

)

e−Zr/^3 acos(θ)

ψ 31 xψ 3 px


2

81


π

(

Z

a

) 3 / 2 (

6 Zr
a


Z^2 r^2
a^2

)

e−Zr/^3 asin(θ) cos(φ)

ψ 31 yψ 3 py


2

81


π

(

Z

a

) 3 / 2 (

6 Zr
a


Z^2 r^2
a^2

)

e−Zr/^3 asin(θ) sin(φ)

ψ 320 ψ 3 dz 2 

1

81


6 π

(

Z

a

) 3 / 2 (

Zr
a

) 2

e−Zr/^3 a[3 cos^2 (θ)−1]

ψ 3 dxz


2

81


π

(

Z

a

) 3 / 2 (

Zr
a

) 2

e−Zr/^3 asin(θ)cos(θ)cos(φ)

ψ 3 dyz


2

81


π

(

Z

a

) 3 / 2 (

Zr
a

) 2

e−Zr/^3 asin(θ)cos(θ) sin(φ)

ψ 3 dx (^2) −y 2 


1

81


2 π

(

Z

a

) 3 / 2 (

Zr
a

) 2

e−Zr/^3 asin^2 (θ)cos(2φ)

ψ 3 dxy

1

81


2 π

(

Z

a

) 3 / 2 (

Zr
a

) 2

e−Zr/^3 asin^2 (θ)sin(2φ)

The Qualitative Properties of the Hydrogen-Like Orbitals


It is important to have a grasp of the qualitative properties of the hydrogen-like orbitals
in three-dimensional space and to realize that they represent three-dimensional de
Broglie waves. The real orbitals that we have obtained correspond to standing waves,
with stationary nodes. We can visualize these waves by considering where they vanish.
A three-dimensional wave can vanish at a surface (anodal surface). Since each orbital
is a product of three factors, the orbital vanishes if any one of the factors vanishes.
Free download pdf