4-PrincipCalculus Page 120 Friday, March 12, 2004 12:39 PM
120 The Mathematics of Financial Modeling and Investment Management
d^2 V d^2 [Ce –i + Ce –^2 i + ...+ (CM+ )e –Ni]
---------- = ----------------------------------------------------------------------------------------------
di^2 di^2
= 12 ⋅Ce –i + 22 ⋅Ce –^2 i + ...+ N^2 ⋅ (CM+ )e –Ni
where we make use of the rule
d
2
---------()ex = ex
dx
2
We can now write the following formulas for convexity:
Convexity for constant interest rates in discrete time:
dV
2
1 1 2 C () 3 () 2 C NN ( + 1 )(CM+ )
---------- ---- = ----------------------- ----------------+ ---------------------+ ...+ ----------------------------------------------
di
(^2) V
V( 1 + i)
(^2) ( 1 + i)
( 1 + i)^2 ( 1 + i)N
Convexity for variable interest rates in discrete time:
d^2 V (^112) C () 3 () 2 C NN ( + 1 )(CM+ )
-------------- = -------------------------+ ---------------------+ ...+ ----------------------------------------------
dx
(^2) V V
( 1 + i 1 )
3
( 1 + i 2 )
4
( 1 + iN)
N + 2
Convexity for continuously compounding constant interest rate in dis-
crete time:^11
d^2 V 1 1 – –Ni
-------------- = ----[Ce +
- i
- 2
2
Ce
2 i- ...+ N
2
(CM)e ]
di^2 V V
- ...+ N
- 2
(^11) The convexity for continuously compounding variable interest rate in discrete time
is
d^2 V 1 1 – ∫^1 is()sd –∫^2 is()sd is()sd
+ 2
2
Ce
0 0
---------- ----= ---- Ce +
0
+ ...+ N
2
(CM)e
- ∫N^
di^2 V V^