4-PrincipCalculus Page 138 Friday, March 12, 2004 12:39 PM
----------------------------------138 The Mathematics of Financial Modeling and Investment ManagementFourier transforms are linear operators. The Fourier transform of
the convolutions is the product of Fourier transforms; the Fourier trans-
form of derivatives and integrals have similar properties to the Laplace
transform.CALCULUS IN MORE THAN ONE VARIABLE
The previous concepts of calculus can be extended in a multivariate envi-
ronment, that is, they can be extended to functions of several variables.
Given a function of nvariables, y= f(x 1 ,...,xn), we can define n partial
derivatives∂fx( 1 , , ...xn )
∂xii= 1,...,nholding constant n– 1 variables and then using the definition
for derivatives of univariate functions:∂fx( 1 , , ...xn) fx( 1 , , ...xi+ h, , ...xn)– fx( 1 , ,, , ...xi ...xn)
---------------------------------- = lim ----------------------------------------------------------------------------------------------------------------
∂xi h→^0 hRepeating this process we can define partial derivatives of any order.
Consider, for example, the following function of two variables:2
fxy ) = e- (x^2 + σxy y )
( ,
Its partial derivatives up to order 2 are given by the following formulas∂f +^2
------ = –( 2 x+ σy)e- (x^2 + σxy y )
∂x
∂f +^2
------= –( 2 y+ σx)e- (x^2 + σxy y )
∂y
∂^2 f –(x^2 + σxy y^2 )^2
+ ( 2 x+ σy)^2 e –(x + σxy y
+^2 )
---------= – 2 e +^
∂x
2