14-Arbitrage Page 405 Wednesday, February 4, 2004 1:08 PM
Arbitrage Pricing: Finite-State Models 405P({}ω ∩Akt) P({}ω )
P({}ω Akt)= ------------------------------------ = -------------------, if ω ∈Akt , 0 if ω∉Akt
PA( kt) PA( kt)Given that the probability space is finite,PA( jt)= ∑ pω
ω ∈AjtAs we defined P({ω}) ≡pωthe previous equation becomesP({}ω ∩Akt) P({}ω ) pω
P({}ω Akt )= ------------------------------------ = ------------------- = ----------------------------
PA( kt) PA( kt) ∑ pω
ω ∈Aktif ω ∈Akt , 0 if ω ∉Akt.Pricing Relationships
We can now write the pricing relationship as follows: T i
ω
i 1 SAkt = ---------- ∑ P({}ω Akt) ∑ πj()ωdj()
πAkt ω ∈A j = t + 1
kt
1 pω T= ---------- ∑ ---------------------------- ∑ πj()di ω
π ω ∈A
kt
∑
ω j()
j = t + 1
Akt pω
ω ∈A
kt
Akt ∈It , 1 ≤k ≤MtThe above formulas generalize to any trading strategy. In particular,
if there is a state-price deflator, the market value of any trading strategy
is given byθθθθ = -----^1 E
t ×St
πtπjdj θ
j t += 1T