Surds, indices, and exponentials (Chapter 4) 117
EXERCISE 4F
1 Solve forx:
a 2 x=8 b 5 x=25 c 3 x=81 d 7 x=1
e 3 x=^13 f 2 x=
p
2 g 5 x= 1251 h 4 x+1=64
i 2 x¡^2 = 321 j 3 x+1= 271 k 7 x+1= 343 l 51 ¡^2 x=^15
2 Solve forx:
a 8 x=32 b 4 x=^18 c 9 x= 271 d 25 x=^15
e 27 x=^19 f 16 x= 321 g 4 x+2= 128 h 251 ¡x= 1251
i 44 x¡^1 =^12 j 9 x¡^3 =27 k (^12 )x+1=8 l (^13 )x+2=9
m 81 x=27¡x n (^14 )^1 ¡x=32 o (^17 )x=49 p (^13 )x+1= 243
3 Solve forx, if possible:
a 42 x+1=8^1 ¡x b 92 ¡x=(^13 )^2 x+1 c 2 x£ 81 ¡x=^14
4 Solve forx:
a
32 x+1
3 x
=9x b
25 x
5 x+4
=25^1 ¡x c
4 x
2 x+2
=
2 x+1
8 x
d
52 x¡^5
125 x
=
251 ¡^2 x
5 x+2
e
4 x
82 ¡x
=2x£ 4 x¡^1 f
92 x
272 ¡x
=
813 x+1
31 ¡^2 x
5 Solve forx:
a 3 £ 2 x=24 b 7 £ 2 x=28 c 3 £ 2 x+1=24
d 12 £ 3 ¡x=^43 e 4 £(^13 )x=36 f 5 £(^12 )x=20
Example 24 Self Tutor
Solve forx: 4 x+2x¡20 = 0
4 x+2x¡20 = 0
) (2x)^2 +2x¡20 = 0 fcompare a^2 +a¡20 = 0g
) (2x¡4)(2x+5)=0 fa^2 +a¡20 = (a¡4)(a+5)g
) 2 x=4or 2 x=¡ 5
) 2 x=2^2 f 2 xcannot be negativeg
) x=2
6 Solve forx:
a 4 x¡6(2x)+8=0 b 4 x¡ 2 x¡2=0 c 9 x¡12(3x)+27=0
d 9 x=3x+6 e 25 x¡23(5x)¡50 = 0 f 49 x+ 1 = 2(7x)
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_04\117CamAdd_04.cdr Tuesday, 14 January 2014 2:28:46 PM BRIAN