CARD GAMESurds, indices, and exponentials (Chapter 4) 1254 Consider y=2ex.
a Explain whyycan never be< 0. b Findyif: i x=¡ 20 ii x=20.
5 Find, to 3 significant figures, the value of:
a e^2 b e^3 c e^0 :^7 dp
e e e¡^1
6 Write the following as powers ofe:ap
e b p^1
ec^1
e^2d ep
e7 On the same set of axes, sketch and clearly label the graphs of:
f:x 7 !ex, g:x 7 !ex¡^2 , h:x 7 !ex+3
State the domain and range of each function.
8 On the same set of axes, sketch and clearly label the graphs of:
f:x 7 !ex, g:x 7 !¡ex, h:x 7! 10 ¡ex
State the domain and range of each function.
9 Expand and simplify:
a (ex+1)^2 b (1 +ex)(1¡ex) c ex(e¡x¡3)
10 Solve forx:
a ex=p
e b e1
2 x=^1
e^2
11 Suppose f:x 7 !ex and g:x 7! 3 x+2.
a Find fg(x) and gf(x). b Solve fg(x)=
1
e
.12 Consider the function f(x)=ex.
a On the same set of axes, sketch y=f(x), y=x, and y=f¡^1 (x).
b State the domain and range off¡^1.Activity #endboxedheading
Click on the icon to run a card game for exponential functions.Review set 4A
1 Simplify:
a 5p
3(4¡p
3) b (6¡ 5p
2)^2
2 Write with integer denominator:a
2
p
3bp
7
p
5c
1
4p
7
3 Simplify using the laws of exponents:a a^4 b^5 £a^2 b^2 b 6 xy^5 ¥ 9 x^2 y^5 c
5(x^2 y)^2
(5x^2 )^24037 Cambridge
cyan magenta yellow black Additional Mathematics(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_04\125CamAdd_04.cdr Tuesday, 14 January 2014 10:28:43 AM BRIAN