Cambridge Additional Mathematics

(singke) #1
14 Sets and Venn diagrams (Chapter 1)

DISJOINT SETS


Two sets aredisjointormutually exclusiveif they have no elements in common.
IfAandBare disjoint then A\B=?.

Example 1 Self Tutor


M=f 2 , 3 , 5 , 7 , 8 , 9 g and N=f 3 , 4 , 6 , 9 , 10 g
a True or false? i 42 M ii 62 =M
b List the sets: i M\N ii M[N
c Is i MμN ii f 9 , 6 , 3 gμN?

ai 4 is not an element ofM,so 42 M is false.
ii 6 is not an element ofM,so 62 =M is true.
biM\N=f 3 , 9 g since 3 and 9 are elements of both
sets.
ii Every element which is in eitherMorNis in the
union ofMandN.
) M[N=f 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 g
ciNo. Not every element ofMis an element ofN.
ii Yes, as 9 , 6 , and 3 are also inN.

EXERCISE 1A


1 Write using set notation:
a 5 is an element of setD b 6 is not an element of setG
c dis not an element of the set of all English vowels
d f 2 , 5 gis a subset off 1 , 2 , 3 , 4 , 5 , 6 g e f 3 , 8 , 6 gis not a subset off 1 , 2 , 3 , 4 , 5 , 6 g.
2 Find i A\B ii A[B for:
a A=f 6 , 7 , 9 , 11 , 12 g and B=f 5 , 8 , 10 , 13 , 9 g
b A=f 1 , 2 , 3 , 4 g and B=f 5 , 6 , 7 , 8 g
c A=f 1 , 3 , 5 , 7 g and B=f 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 g

3 Suppose A=f 0 , 3 , 5 , 8 , 14 g and B=f 1 , 4 , 5 , 8 , 11 , 13 g. Write down the number of elements in:
a A b B c A\B d A[B
4 True or false?
a Z+μN b N ½Z c N =Z+ d Z¡μZ
e Q ½Z f f 0 gμZ g ZμQ h Z+[Z¡=Z
5 Describe the following sets as either finite or infinite:
a the set of counting numbers between 10 and 20
b the set of counting numbers greater than 5
c the set of all rational numbersQ
d the set of all rational numbers between 0 and 1.

To write down ,
start with and add to
it the elements of
which are not in.

MN
M
N
M

[

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_01\014CamAdd_01.cdr Friday, 29 November 2013 10:11:25 AM GR8GREG

Free download pdf