y1 x1
(e 1),(1 e),y=xy=exy=lnxO142 Logarithms (Chapter 5)InChapter 4we came across thenatural exponential e¼ 2 :718 28.Given the exponential function f(x)=ex, the inverse function f¡^1 = logex is the logarithm in basee.
We use lnx to represent logex, and calllnxthenatural logarithmofx.
y=lnx is the reflection of y=ex in the mirror line y=x.Notice that: ² ln 1 = lne^0 =0
² lne=lne^1 =1
² lne^2 =2² lnp
e=lne1(^2) =^1
2
² ln
³ 1
e
́
=lne¡^1 =¡ 1
lnex=x and elnx=x.
Since ax=
¡
elna
¢x
=exlna, ax=exlna, a> 0.
EXERCISE 5E.1
1 Without using a calculator find:
a lne^2 b lne^3 c lnp
e d ln 1e ln³ 1
é
f ln^3p
e g ln³ 1
e^2́
h lnμ
1
p
e¶Check your answers using a calculator.2 Simplify:
a eln 3 b e2ln3 c e¡ln 5 d e¡2ln23 Explain why ln(¡2) and ln 0 cannot be found.4 Simplify:a lnea b ln(e£ea) c ln¡
ea£eb¢
d ln(ea)b e lnμ
ea
eb¶Example 14 Self Tutor
Use your calculator to write the following in the formek wherekis correct to
4 decimal places:
a 50 b 0 : 005a 50
=eln 50 fusing x=elnxg
¼e^3 :^9120b 0 : 005
=eln 0:^005
¼e¡^5 :^2983E Natural logarithms
cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_05\142CamAdd_05.cdr Friday, 20 December 2013 1:05:03 PM BRIAN