Cambridge Additional Mathematics

(singke) #1
Logarithms (Chapter 5) 145

5 Write the following equations without logarithms, assuming all terms are positive:
a lnD=lnx+1 b lnF=¡lnp+2 c lnP=2x+ln5
d lnM=2lny+3 e lnB=3t¡ln 4 f lnN=¡^13 lng
g lnQ¼3lnx+2: 159 h lnD¼ 0 :4lnn¡ 0 : 6582 i lnT¼¡x+1: 578

InChapter 4we found solutions to simple exponential equations where we could make equal bases and
then equate exponents. However, it is not always easy to make the bases the same. In these situations we
uselogarithmsto find the solution.

Example 20 Self Tutor


Solve forx, giving your answers correct to 3 significant figures:
a 2 x=7 b 53 x¡^1 =90

a 2 x=7
) lg 2x=lg7
) xlg 2 = lg 7 flg(an)=nlgag

) x=
lg 7
lg 2
) x¼ 2 : 81

b 53 x¡^1 =90
) lg 5^3 x¡^1 =lg90
) (3x¡1) lg 5 = lg 90 flg(an)=nlgag

) 3 x¡1=
lg 90
lg 5
) x=^13

³
1+
lg 90
lg 5

́

) x¼ 1 : 27

Example 21 Self Tutor


Findxexactly:
a ex=30 b 3 e

x
2
=21

a ex=30
) x=ln30

b 3 e

x
2
=21

) e

x
2
=7
)
x
2
=ln7
) x= 2 ln 7

EXERCISE 5F


1 Solve forx, giving your answer correct to 3 significant figures:
a 2 x=10 b 3 x=20 c 4 x= 100
d

¡ 1
2

¢x
=0: 0625 e

¡ 3
4

¢x
=0: 1 f 10 x=0:000 01

using logarithms F Solving exponential equations

LOGARITHMS


F


4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_05\145CamAdd_05.cdr Tuesday, 21 January 2014 2:49:47 PM BRIAN

Free download pdf