170 Polynomials (Chapter 6)
Example 18 Self Tutor
x¡ 2 is a factor of P(x)=x^3 +kx^2 ¡ 3 x+6.
Findk, and write P(x) as a product of linear factors.
Since x¡ 2 is a factor, P(2) = 0 fFactor theoremg
) (2)^3 +k(2)^2 ¡3(2) + 6 = 0
) 8+4k=0
) k=¡ 2
The coefficient of
x^3 is 1 £1=1
The constant term
is ¡ 2 £¡3=6
So, P(x)=x^3 ¡ 2 x^2 ¡ 3 x+6=(x¡2)(x^2 +bx¡3)
=x^3 +(b¡2)x^2 +(¡ 2 b¡3)x+6
Equatingx^2 s: b¡2=¡ 2
) b=0
So, P(x)=(x¡2)(x^2 ¡3)
=(x¡2)(x+
p
3)(x¡
p
3)
Example 19 Self Tutor
2 x¡ 1 is a factor of f(x)=4x^3 ¡ 4 x^2 +ax+b, and the remainder
when f(x) is divided by x¡ 1 is¡ 1. Find the values ofaandb.
2 x¡ 1 is a factor of f(x),sof(^12 )=0
) 4(^12 )^3 ¡4(^12 )^2 +a(^12 )+b=0
)^12 a+b=^12 .... (1)
Also, f(1) =¡ 1 fRemainder theoremg
) 4(1)^3 ¡4(1)^2 +a(1) +b=¡ 1
) a+b=¡ 1 .... (2)
Solving simultaneously: ¡a¡ 2 b=¡ 1 f¡ 2 £(1)g
a+b=¡ 1 f(2)g
Adding, ¡b=¡ 2
) b=2 and a=¡ 3
EXERCISE 6D
1 Use the Factor theorem to determine whether:
a x¡ 1 is a factor of 4 x^3 ¡ 7 x^2 +5x¡ 2 b x¡ 3 is a factor of x^4 ¡x^3 ¡ 4 x^2 ¡ 15
c x+2 is a factor of 3 x^3 +5x^2 ¡ 6 x¡ 8 d x+4 is a factor of 2 x^3 +6x^2 +4x+16.
If is a factor of ,
then.
21 ()
( )=0
xfx
f
¡
__Qw
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_06\170CamAdd_06.cdr Friday, 20 December 2013 1:00:36 PM BRIAN