Cambridge Additional Mathematics

(singke) #1
174 Polynomials (Chapter 6)

2 Carry out the following divisions:

a
x^3
x+2
b
x^3
(x+ 2)(x+3)

3 Findallcubic polynomials with zeros^14 , 1 §

p
5.

4 If f(x)=x^3 ¡ 3 x^2 ¡ 9 x+b has (x¡k)^2 as a factor, show that there are two possible
values ofk. For each of these two values ofk, find the corresponding value forb, and hence solve
f(x)=0.
5 Find the remainder when:
a x^3 ¡ 5 x^2 +9 is divided by x¡ 2 b 4 x^3 +7x¡ 11 is divided by 2 x¡ 1.

6 When f(x)=2x^3 ¡x^2 +ax¡ 4 is divided by x¡ 3 , the remainder is 56.
a Finda. b Find the remainder when f(x) is divided by x+1.

7aUse the Factor theorem to show that x¡ 2 is a factor of x^3 ¡ 13 x+18.
b Write x^3 ¡ 13 x+18 in the form (x¡2)(ax^2 +bx+c), where a,b,c 2 Z.
c Find the real roots of x^3 +18=13x.
8 x¡ 2 and x+3are factors of ax^3 ¡ 3 x^2 ¡ 11 x+b. Findaandb.
9 x+1is a factor of f(x)=x^3 +5x^2 +kx+4. Findk, and the zeros of f(x).

10 2 x¡ 1 is a factor of f(x)=2x^3 ¡ 9 x^2 +ax+b, and when f(x) is divided by x¡ 1 the
remainder is¡ 15.
a Findaandb. b Write f(x) as a product of linear factors.

11 Solve forx: 2 x^3 ¡ 2 x^2 ¡ 28 x+48=0

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_06\174CamAdd_06.cdr Thursday, 3 April 2014 5:19:24 PM BRIAN

Free download pdf