9
O
lgK
lg 7
( 81lg lg, 63)
lgt
O x 3
(5 20),
y lgy
O lgx
192 Straight line graphs (Chapter 7)
a
b
10 Graph A Graph B
The relationship betweenxandyinGraph Acan also be plotted as a straight line inGraph B. For the
straight line inGraph B, find the:
a gradient b intercept on the vertical axis.
We have seen how the transformation of variables may allow us
to display a non-linear relationship using a straight line graph. It
is particularly useful to do this if we are trying to use a function
to model data.
Case study Exponential growth and decay#endboxedheading
Logarithms are particularly important in science. Many physical processes are modelled accurately by
exponential laws.
For example, the United Nations published the following data on world population:
Year PopulationP(in billions) lgP Year PopulationP(in billions) lgP
1750 0 : 79 ¡ 0 : 236 1950 2 : 52 0 : 924
1800 0 : 98 ¡ 0 : 0202 1960 3 : 02 1 : 11
1850 1 : 26 1970 3 : 70 1 : 31
1900 1 : 65 0 : 501 1980 4 : 44 1 : 49
1910 1 : 75 0 : 560 1990 5 : 27 1 : 66
1920 1 : 86 0 : 621 1999 5 : 98 1 : 79
1930 2 : 07 0 : 728 2000 6 : 06 1 : 80
1940 230 0 833 2010 679 192
E Finding relationships from data
Exponential, power, and logarithmic
models can be transformed to
straight line graphs.
0 : 231
WriteKin terms oft.
Hence findKwhen t=9.
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_07\192CamAdd_07.cdr Tuesday, 21 January 2014 12:14:25 PM BRIAN