The unit circle and radian measure (Chapter 8) 221We define the reciprocal trigonometric functions cosecμ, secantμ, and cotangentμ as:cosecμ=1
sinμ, secμ=1
cosμ, and cotμ=1
tanμ=cosμ
sinμUsing these definitions we can derive the identities:tan^2 μ+ 1 = sec^2 μ and 1 + cot^2 μ= cosec^2 μProof: Using sin^2 μ+ cos^2 μ=1,
sin^2 μ
cos^2 μ
+
cos^2 μ
cos^2 μ
=
1
cos^2 μ
fdividing each term bycos^2 μg) tan^2 μ+ 1 = sec^2 μAlso using sin^2 μ+ cos^2 μ=1,
sin^2 μ
sin^2 μ+
cos^2 μ
sin^2 μ=
1
sin^2 μfdividing each term bysin^2 μg) 1 + cot^2 μ= cosec^2 μEXERCISE 8F
1 Without using a calculator, find:
a cosec¡¼
3¢
b cot¡ 2 ¼
3¢
c sec¡ 5 ¼
6¢
d cot (¼)e cosec¡ 4 ¼
3¢
f sec¡ 7 ¼
4¢2 Without using a calculator, find cosecx, secx, and cotx for:
a sinx=^35 , 06 x 6 ¼ 2 b cosx=^23 ,^32 ¼<x< 2 ¼3 Find the otherfivetrigonometric ratios if:
a cosμ=^34 and^32 ¼<μ< 2 ¼ b sinx=¡^23 and ¼<x<^32 ¼
c secx=2^12 and 0 <x<¼ 2 d cosecμ=2 and ¼ 2 <μ<¼
e tan ̄=^12 and ¼< ̄<^32 ¼ f cotμ=^43 and ¼<μ<^32 ¼4 Findallvalues ofμfor which:
a cosecμ is undefined b secμ is undefined
c cotμ is zero d cotμ is undefined.Review set 8A
1 Convert these to radians in terms of¼:
a 120 ± b 225 ± c 150 ± d 540 ±
2 Find the acute angles that would have the same:
a sine as^23 ¼ b sine as 165 ± c cosine as 276 ±.F Reciprocal trigonometric ratios
4037 Cambridge
cyan magenta yellow black Additional Mathematics(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_08\221CamAdd_08.cdr Monday, 23 December 2013 1:59:14 PM BRIAN