The unit circle and radian measure (Chapter 8) 221
We define the reciprocal trigonometric functions cosecμ, secantμ, and cotangentμ as:
cosecμ=
1
sinμ
, secμ=
1
cosμ
, and cotμ=
1
tanμ
=
cosμ
sinμ
Using these definitions we can derive the identities:
tan^2 μ+ 1 = sec^2 μ and 1 + cot^2 μ= cosec^2 μ
Proof: Using sin^2 μ+ cos^2 μ=1,
sin^2 μ
cos^2 μ
+
cos^2 μ
cos^2 μ
=
1
cos^2 μ
fdividing each term bycos^2 μg
) tan^2 μ+ 1 = sec^2 μ
Also using sin^2 μ+ cos^2 μ=1,
sin^2 μ
sin^2 μ
+
cos^2 μ
sin^2 μ
=
1
sin^2 μ
fdividing each term bysin^2 μg
) 1 + cot^2 μ= cosec^2 μ
EXERCISE 8F
1 Without using a calculator, find:
a cosec
¡¼
3
¢
b cot
¡ 2 ¼
3
¢
c sec
¡ 5 ¼
6
¢
d cot (¼)
e cosec
¡ 4 ¼
3
¢
f sec
¡ 7 ¼
4
¢
2 Without using a calculator, find cosecx, secx, and cotx for:
a sinx=^35 , 06 x 6 ¼ 2 b cosx=^23 ,^32 ¼<x< 2 ¼
3 Find the otherfivetrigonometric ratios if:
a cosμ=^34 and^32 ¼<μ< 2 ¼ b sinx=¡^23 and ¼<x<^32 ¼
c secx=2^12 and 0 <x<¼ 2 d cosecμ=2 and ¼ 2 <μ<¼
e tan ̄=^12 and ¼< ̄<^32 ¼ f cotμ=^43 and ¼<μ<^32 ¼
4 Findallvalues ofμfor which:
a cosecμ is undefined b secμ is undefined
c cotμ is zero d cotμ is undefined.
Review set 8A
1 Convert these to radians in terms of¼:
a 120 ± b 225 ± c 150 ± d 540 ±
2 Find the acute angles that would have the same:
a sine as^23 ¼ b sine as 165 ± c cosine as 276 ±.
F Reciprocal trigonometric ratios
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_08\221CamAdd_08.cdr Monday, 23 December 2013 1:59:14 PM BRIAN