Cambridge Additional Mathematics

(singke) #1
The unit circle and radian measure (Chapter 8) 221

We define the reciprocal trigonometric functions cosecμ, secantμ, and cotangentμ as:

cosecμ=

1
sinμ

, secμ=

1
cosμ

, and cotμ=

1
tanμ

=

cosμ
sinμ

Using these definitions we can derive the identities:

tan^2 μ+ 1 = sec^2 μ and 1 + cot^2 μ= cosec^2 μ

Proof: Using sin^2 μ+ cos^2 μ=1,
sin^2 μ
cos^2 μ
+
cos^2 μ
cos^2 μ
=
1
cos^2 μ
fdividing each term bycos^2 μg

) tan^2 μ+ 1 = sec^2 μ

Also using sin^2 μ+ cos^2 μ=1,
sin^2 μ
sin^2 μ

+
cos^2 μ
sin^2 μ

=
1
sin^2 μ

fdividing each term bysin^2 μg

) 1 + cot^2 μ= cosec^2 μ

EXERCISE 8F


1 Without using a calculator, find:
a cosec

¡¼
3

¢
b cot

¡ 2 ¼
3

¢
c sec

¡ 5 ¼
6

¢
d cot (¼)

e cosec

¡ 4 ¼
3

¢
f sec

¡ 7 ¼
4

¢

2 Without using a calculator, find cosecx, secx, and cotx for:
a sinx=^35 , 06 x 6 ¼ 2 b cosx=^23 ,^32 ¼<x< 2 ¼

3 Find the otherfivetrigonometric ratios if:
a cosμ=^34 and^32 ¼<μ< 2 ¼ b sinx=¡^23 and ¼<x<^32 ¼
c secx=2^12 and 0 <x<¼ 2 d cosecμ=2 and ¼ 2 <μ<¼
e tan ̄=^12 and ¼< ̄<^32 ¼ f cotμ=^43 and ¼<μ<^32 ¼

4 Findallvalues ofμfor which:
a cosecμ is undefined b secμ is undefined
c cotμ is zero d cotμ is undefined.

Review set 8A

1 Convert these to radians in terms of¼:
a 120 ± b 225 ± c 150 ± d 540 ±
2 Find the acute angles that would have the same:
a sine as^23 ¼ b sine as 165 ± c cosine as 276 ±.

F Reciprocal trigonometric ratios

4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_08\221CamAdd_08.cdr Monday, 23 December 2013 1:59:14 PM BRIAN

Free download pdf