yx
12345678910111213141510.5-0.5-1yy y=sin2x11 22 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515 xx110.50.5-1-1y=y=sinsin2x2xOO
-0.5-0.5-0.5yx
12345678910111213141510.5-1y=sinxyx
1234567891011121314150.5-0.5-1(^1) y=cosx
-0.5-0.5
yy
11 22 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515 xx
11
0.50.5
-1-1
y=y=sinsinxx
OO
yy
11 22 33 44 55 66 77 99 1010 1212 1313 1414 1515 xx
-0.5-0.5
-1-1
y=y=coscosxx
OO
0.50.5
11
88 1111
242 Trigonometric functions (Chapter 9)
EXERCISE 9E.1
1Use the graph of y= sinx to find, correct to 1 decimal place, the solutions of:
a sinx=0: 3 for 06 x 615 b sinx=¡ 0 : 4 for 56 x 615.2Use the graph of y= cosx to find, correct to 1 decimal place, the solutions of:
a cosx=0: 6 for 06 x 610 b cosx=¡ 0 : 3 for 46 x 612.3Use the graph of y= sin 2x to find, correct to 1 decimal place, the solutions of:
a sin 2x=0: 7 for 06 x 616 b sin 2x=¡ 0 : 3 for 06 x 616.cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_09\242CamAdd_09.cdr Tuesday, 28 January 2014 9:40:33 AM BRIAN