Start at and work
around to , noting down
the angle every time you
reach points A and B.
¡ 2
2
¼
¼
Start at angle and work
around to , noting down
the angle every time you
reach points A and B.
0
3 ¼
-_Qw
O
AUh_p BQ_____QyQ_p
AB-Qw
3 ¼ OO 0
Trigonometric functions (Chapter 9) 245
Example 8 Self Tutor
Solve exactly for 06 x 63 ¼: a sinx=¡^12 b sin 2x=¡^12
The equations both have the form sinμ=¡^12.
There are two points on the unit circle with sine¡^12.
They correspond to angles^76 ¼ and^116 ¼.
a In this caseμis simplyx,sowe
have the domain 06 x 63 ¼.
The only solutions for this domain
are x=^76 ¼ or^116 ¼.
b In this caseμis 2 x.
If 06 x 63 ¼ then 062 x 66 ¼.
) 2 x=^76 ¼,^116 ¼,^196 ¼,^236 ¼,^316 ¼,or^356 ¼
) x=^712 ¼,^1112 ¼,^1912 ¼,^2312 ¼,^3112 ¼,or^3512 ¼
3 Solve exactly for 06 x 63 ¼: a cosx=^12 b cos 2x=^12
4 Solve exactly for 06 x 62 ¼: a sinx=¡p^12 b sin 3x=¡p^12
5 Find the exact solutions of:
a cosx=¡^12 , 06 x 65 ¼ b 2 sinx¡1=0, ¡ 360 ± 6 x 6360 ±
c 2 cosx+
p
3=0, 06 x 63 ¼ d 3 cos 2x+3=0, 06 x 63 ¼
e 4 cos 3x+2=0, ¡¼ 6 x 6 ¼
Example 9 Self Tutor
Solve tan 2x+1=2for ¡¼ 6 x 6 ¼.
tan 2x=1
There are two points on the unit
circle which have tangent 1.
Since ¡¼ 6 x 6 ¼,
¡ 2 ¼ 62 x 62 ¼
So, 2 x=¡^74 ¼, ¡^34 ¼, ¼ 4 ,or^54 ¼
) x=¡^78 ¼, ¡^38 ¼, ¼ 8 ,or^58 ¼
A_rp
BTf_p
O
_rp
-2¼
2 ¼
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_09\245CamAdd_09.cdr Friday, 4 April 2014 1:21:28 PM BRIAN