Cambridge Additional Mathematics

(singke) #1
-4¼ - 2 ¼

2 ¼ 4 ¼ x

6

4

2

y

O

x

y

-4-4¼¼ -2-2¼¼ O 22 ¼¼ 44 ¼¼

5 ¼
Qw^3

¼
3

O

¼
O

Trigonometric functions (Chapter 9) 251

b 2 cos^2 x+ cosx¡1=0
) (2 cosx¡1)(cosx+1)=0
) cosx=^12 or¡ 1

cosx=^12 when
x=¼ 3 or^53 ¼

cosx=¡ 1 when
x=¼

The solutions are: x=¼ 3 ,¼,or^53 ¼.

EXERCISE 9G


1 Solve for 06 x 62 ¼:
a 2 sin^2 x+ sinx=0 b 2 cos^2 x= cosx c 2 cos^2 x+ cosx¡1=0
d 2 sin^2 x+ 3 sinx+1=0 e sin^2 x=2¡cosx f cosx+ secx=2
2 Solve for 06 x 62 ¼:
a sin^2 x+ cosx=¡ 1 b 2 cos^2 x= 3 sinx

Review set 9A


#endboxedheading

1 Which of the following graphs
ab

2 Draw each of the following graphs for 06 x 62 ¼:
a y= 5 sinx b y= cos 3x¡ 1 c y= tan 2x+4
3 State the minimum and maximum values of:
a 1 + sinx b 2 cos 3x c y= 3 sin 2x d y= cos 4x¡ 1
4 State the period of:
a y= 4 sinx b y= 2 cos 4x c y= 4 cos 2x+4 d y= 2 tan 3x

5 Complete the table: Function Period Amplitude Domain Range
y= 3 sin 2x+1
y= tan 2x
y= 2 cos 3x¡ 3

displays periodic behaviour?

4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_09\251CamAdd_09.cdr Tuesday, 8 April 2014 10:31:19 AM BRIAN

Free download pdf