272 Counting and the binomial expansion (Chapter 10)
Example 16 Self Tutor
Find the:
a 5 th row of Pascal’s triangle b binomial expansion of
³
x¡
2
x
́ 5
.
a 1
11
121
1331
14641
1 5 10 10 5 1
the 0 th row, for (a+b)^0
the 1 st row, for (a+b)^1
the 5 th row, for (a+b)^5
b Using the coefficients obtained ina, (a+b)^5 =a^5 +5a^4 b+10a^3 b^2 +10a^2 b^3 +5ab^4 +b^5
Letting a=(x) and b=
³
¡ 2
x
́
, we find
³
x¡
2
x
́ 5
=(x)^5 +5(x)^4
³
¡ 2
x
́
+ 10(x)^3
³
¡ 2
x
́ 2
+ 10(x)^2
³
¡ 2
x
́ 3
+5(x)
³
¡ 2
x
́ 4
+
³
¡ 2
x
́ 5
=x^5 ¡ 10 x^3 +40x¡
80
x
+
80
x^3
¡
32
x^5
EXERCISE 10F
1 Use the binomial expansion of (a+b)^3 to expand and simplify:
a (p+q)^3 b (x+1)^3 c (x¡3)^3
d (2 +x)^3 e (3x¡1)^3 f (2x+5)^3
g (2a¡b)^3 h
¡
3 x¡^13
¢ 3
i
³
2 x+
1
x
́ 3
2 Use (a+b)^4 =a^4 +4a^3 b+6a^2 b^2 +4ab^3 +b^4 to expand and simplify:
a (1 +x)^4 b (p¡q)^4 c (x¡2)^4
d (3¡x)^4 e (1 + 2x)^4 f (2x¡3)^4
g (2x+b)^4 h
³
x+
1
x
́ 4
i
³
2 x¡
1
x
́ 4
3 Expand and simplify:
a (x+2)^5 b (x¡ 2 y)^5 c (1 + 2x)^5 d
³
x¡
1
x
́ 5
4 Expand and simplify (2 +x)^5 +(2¡x)^5.
5aWrite down the 6 th row of Pascal’s triangle.
b Find the binomial expansion of:
i (x+2)^6 ii (2x¡1)^6 iii
³
x+
1
x
́ 6
6 Expand and simplify:
a (1 +
p
2)^3 b (
p
5+2)^4 c (2¡
p
2)^5
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_10\272CamAdd_10.cdr Monday, 23 December 2013 4:33:01 PM BRIAN