Cambridge Additional Mathematics

(singke) #1
274 Counting and the binomial expansion (Chapter 10)

Example 17 Self Tutor


Write down the first three and last two terms of the expansion of

³
2 x+^1
x

́ 12
.
Do not simplify your answer.

³
2 x+
1
x

́ 12
=(2x)^12 +

¡ 12
1

¢
(2x)^11

³ 1
x

́ 1
+

¡ 12
2

¢
(2x)^10

³ 1
x

́ 2
+::::

::::+

¡ 12
11

¢
(2x)^1

³ 1
x

́ 11
+

³ 1
x

́ 12

Example 18 Self Tutor


Find the 7 th term of

³
3 x¡
4
x^2

́ 14

. Do not simplify your answer.


a=(3x), b=

³
¡ 4
x^2

́
, and n=14

Given the general term Tr+1=

¡n
r

¢
an¡rbr, we let r=6

) T 7 =

¡ 14
6

¢
(3x)^8

³¡ 4
x^2

́ 6

Example 19 Self Tutor


In the expansion of

³
x^2 +
4
x

́ 12
, find:

a the coefficient ofx^6 b the constant term.

a=(x^2 ), b=

³
4
x

́
, and n=12

) the general term Tr+1=

¡ 12
r

¢
(x^2 )^12 ¡r

³ 4
x

́r

=

¡ 12
r

¢
x^24 ¡^2 r£
4 r
xr
=

¡ 12
r

¢
4 rx^24 ¡^3 r

a If 24 ¡ 3 r=6
then 3 r=18
) r=6
) T 7 =

¡ 12
6

¢
46 x^6
) the coefficient ofx^6 is
¡ 12
6

¢
46 or 3 784 704.

b If 24 ¡ 3 r=0
then 3 r=24
) r=8
) T 9 =

¡ 12
8

¢
48 x^0
) the constant term is
¡ 12
8

¢
48 or 32 440 320.

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_10\274CamAdd_10.cdr Monday, 6 January 2014 12:02:27 PM BRIAN

Free download pdf