274 Counting and the binomial expansion (Chapter 10)Example 17 Self Tutor
Write down the first three and last two terms of the expansion of³
2 x+^1
x́ 12
.
Do not simplify your answer.³
2 x+
1
x́ 12
=(2x)^12 +¡ 12
1¢
(2x)^11³ 1
x́ 1
+¡ 12
2¢
(2x)^10³ 1
x́ 2
+::::::::+¡ 12
11¢
(2x)^1³ 1
x́ 11
+³ 1
x́ 12Example 18 Self Tutor
Find the 7 th term of³
3 x¡
4
x^2́ 14. Do not simplify your answer.
a=(3x), b=³
¡ 4
x^2́
, and n=14Given the general term Tr+1=¡n
r¢
an¡rbr, we let r=6) T 7 =¡ 14
6¢
(3x)^8³¡ 4
x^2́ 6Example 19 Self Tutor
In the expansion of³
x^2 +
4
x́ 12
, find:a the coefficient ofx^6 b the constant term.a=(x^2 ), b=³
4
x́
, and n=12) the general term Tr+1=¡ 12
r¢
(x^2 )^12 ¡r³ 4
x́r=¡ 12
r¢
x^24 ¡^2 r£
4 r
xr
=¡ 12
r¢
4 rx^24 ¡^3 ra If 24 ¡ 3 r=6
then 3 r=18
) r=6
) T 7 =¡ 12
6¢
46 x^6
) the coefficient ofx^6 is
¡ 12
6¢
46 or 3 784 704.b If 24 ¡ 3 r=0
then 3 r=24
) r=8
) T 9 =¡ 12
8¢
48 x^0
) the constant term is
¡ 12
8¢
48 or 32 440 320.cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_10\274CamAdd_10.cdr Monday, 6 January 2014 12:02:27 PM BRIAN