274 Counting and the binomial expansion (Chapter 10)
Example 17 Self Tutor
Write down the first three and last two terms of the expansion of
³
2 x+^1
x
́ 12
.
Do not simplify your answer.
³
2 x+
1
x
́ 12
=(2x)^12 +
¡ 12
1
¢
(2x)^11
³ 1
x
́ 1
+
¡ 12
2
¢
(2x)^10
³ 1
x
́ 2
+::::
::::+
¡ 12
11
¢
(2x)^1
³ 1
x
́ 11
+
³ 1
x
́ 12
Example 18 Self Tutor
Find the 7 th term of
³
3 x¡
4
x^2
́ 14
. Do not simplify your answer.
a=(3x), b=
³
¡ 4
x^2
́
, and n=14
Given the general term Tr+1=
¡n
r
¢
an¡rbr, we let r=6
) T 7 =
¡ 14
6
¢
(3x)^8
³¡ 4
x^2
́ 6
Example 19 Self Tutor
In the expansion of
³
x^2 +
4
x
́ 12
, find:
a the coefficient ofx^6 b the constant term.
a=(x^2 ), b=
³
4
x
́
, and n=12
) the general term Tr+1=
¡ 12
r
¢
(x^2 )^12 ¡r
³ 4
x
́r
=
¡ 12
r
¢
x^24 ¡^2 r£
4 r
xr
=
¡ 12
r
¢
4 rx^24 ¡^3 r
a If 24 ¡ 3 r=6
then 3 r=18
) r=6
) T 7 =
¡ 12
6
¢
46 x^6
) the coefficient ofx^6 is
¡ 12
6
¢
46 or 3 784 704.
b If 24 ¡ 3 r=0
then 3 r=24
) r=8
) T 9 =
¡ 12
8
¢
48 x^0
) the constant term is
¡ 12
8
¢
48 or 32 440 320.
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_10\274CamAdd_10.cdr Monday, 6 January 2014 12:02:27 PM BRIAN