284 Vectors (Chapter 11)4 Write in component form and illustrate using a directed line segment:
a i+2j b ¡i+3j c ¡ 5 j d 4 i¡ 2 j5 Write down the negative of:aμ
1
4¶
bμ
¡ 2
3¶
cμ
5
¡ 2¶
dμ
0
¡ 6¶Consider vector a=μ
2
3¶
=2i+3j.Themagnitudeorlengthofais represented byjaj.By Pythagoras, jaj^2 =2^2 +3^2 =4+9=13
) jaj=p
13 units fsince jaj> 0 gIf a=μ
a 1
a 2¶
=a 1 i+a 2 j, themagnitudeorlengthofais jaj=p
a 12 +a 22.Example 2 Self Tutor
If p=μ
3
¡ 5¶
and q=2i¡ 5 j, find:a jpj b jqja p=μ
3
¡ 5¶) jpj=p
32 +(¡5)^2
=p
34 unitsb q=2i¡ 5 j=μ
2
¡ 5¶) jqj=p
22 +(¡5)^2
=p
29 unitsUNIT VECTORS
Aunit vectoris any vector which has a length of one unit.i=μ
1
0¶
and j=μ
0
1¶
are the base unit vectors in the positive
xandy-directions respectively.B The magnitude of a vector
2a 3cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_11\284CamAdd_11.cdr Thursday, 23 January 2014 1:30:09 PM BRIAN