Cambridge Additional Mathematics

(singke) #1
284 Vectors (Chapter 11)

4 Write in component form and illustrate using a directed line segment:
a i+2j b ¡i+3j c ¡ 5 j d 4 i¡ 2 j

5 Write down the negative of:

a

μ
1
4


b

μ
¡ 2
3


c

μ
5
¡ 2


d

μ
0
¡ 6


Consider vector a=

μ
2
3


=2i+3j.

Themagnitudeorlengthofais represented byjaj.

By Pythagoras, jaj^2 =2^2 +3^2 =4+9=13
) jaj=

p
13 units fsince jaj> 0 g

If a=

μ
a 1
a 2


=a 1 i+a 2 j, themagnitudeorlengthofais jaj=

p
a 12 +a 22.

Example 2 Self Tutor


If p=

μ
3
¡ 5


and q=2i¡ 5 j, find:

a jpj b jqj

a p=

μ
3
¡ 5


) jpj=

p
32 +(¡5)^2
=

p
34 units

b q=2i¡ 5 j=

μ
2
¡ 5


) jqj=

p
22 +(¡5)^2
=

p
29 units

UNIT VECTORS


Aunit vectoris any vector which has a length of one unit.

i=

μ
1
0


and j=

μ
0
1


are the base unit vectors in the positive
xandy-directions respectively.

B The magnitude of a vector


2

a 3

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_11\284CamAdd_11.cdr Thursday, 23 January 2014 1:30:09 PM BRIAN

Free download pdf