Vectors (Chapter 11) 30311 LineLhas equation r=μ
3
¡ 3¶
+tμ
2
5¶a Locate the point on the line corresponding to t=1.b Explain why the direction of the line could also be described byμ
4
10¶c Use your answers toaandbto write an alternative vector equation for lineL.12 A moving particle has coordinates P(x(t),y(t)) where x(t)=¡4+8t and y(t)=3+6t.
The distance units are metres, and t> 0 is the time in seconds. Find the:
a initial position of the particle b position of the particle after 4 seconds
c particle’s velocity vector d speed of the particle.Review set 11B
1aFind in component form and in unit vector form:
i¡!
AB ii¡!
BC iii¡!
CA
b Which two vectors in a have the same length?
Explain your answer.
c Write the negative vector of
¡!
CA inthreedifferent
ways.2 If r=μ
4
1¶
and s=μ
¡ 3
2¶
find:a jsj b jr+sj c j 2 s¡rj3 Findkif the following are unit vectors:aμ 5
13
k¶
bμ
k
¡k¶4 If¡!
PQ=μ
¡ 4
1¶
,¡!
RQ=μ
¡ 1
2¶
, and¡!
RS=μ
2
¡ 3¶
, find¡!
SP.5 [MN] is the diameter of a circle with centre C.
a Find the coordinates of M.
b Find the radius of the circle.6 Findmifμ
3
m¶
andμ
¡ 12
¡ 20¶
are parallel vectors.ABCMN,(6 -2)C,(2 1)4037 Cambridge
cyan magenta yellow black Additional Mathematics(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_11\303CamAdd_11.cdr Friday, 4 April 2014 2:29:34 PM BRIAN