Vectors (Chapter 11) 303
11 LineLhas equation r=
μ
3
¡ 3
¶
+t
μ
2
5
¶
a Locate the point on the line corresponding to t=1.
b Explain why the direction of the line could also be described by
μ
4
10
¶
c Use your answers toaandbto write an alternative vector equation for lineL.
12 A moving particle has coordinates P(x(t),y(t)) where x(t)=¡4+8t and y(t)=3+6t.
The distance units are metres, and t> 0 is the time in seconds. Find the:
a initial position of the particle b position of the particle after 4 seconds
c particle’s velocity vector d speed of the particle.
Review set 11B
1aFind in component form and in unit vector form:
i
¡!
AB ii
¡!
BC iii
¡!
CA
b Which two vectors in a have the same length?
Explain your answer.
c Write the negative vector of
¡!
CA inthreedifferent
ways.
2 If r=
μ
4
1
¶
and s=
μ
¡ 3
2
¶
find:
a jsj b jr+sj c j 2 s¡rj
3 Findkif the following are unit vectors:
a
μ 5
13
k
¶
b
μ
k
¡k
¶
4 If
¡!
PQ=
μ
¡ 4
1
¶
,
¡!
RQ=
μ
¡ 1
2
¶
, and
¡!
RS=
μ
2
¡ 3
¶
, find
¡!
SP.
5 [MN] is the diameter of a circle with centre C.
a Find the coordinates of M.
b Find the radius of the circle.
6 Findmif
μ
3
m
¶
and
μ
¡ 12
¡ 20
¶
are parallel vectors.
AB
C
M
N,(6 -2)
C,(2 1)
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_11\303CamAdd_11.cdr Friday, 4 April 2014 2:29:34 PM BRIAN