310 Matrices (Chapter 12)MATRIX SUBTRACTION
Suppose Thao’s stock levels were0@29 51 19
31 28 32
40 17 291Aand her sales matrix for the week was0@15 12 6
20 16 19
19 8 141A.Thao will be left with her original stock levels less what she has sold. Clearly, we need to subtract
corresponding elements:
0@29 51 19
31 28 32
40 17 291A¡0@15 12 6
20 16 19
19 8 141A=0@14 39 13
11 12 13
21 9 151ATosubtractmatrices, they must be of thesame order, and wesubtract
corresponding elements.Summary:Example 2 Self Tutor
If A=μ
123
654¶
, B=μ
216
035¶
, and C=μ
31
24¶
, find:a A+B b A+Ca A+B=μ
123
654¶
+μ
216
035¶=μ
1+2 2+1 3+6
6+0 5+3 4+5¶=μ
339
689¶b A+C cannot be found as the
matrices do not have the same
order.Example 3 Self Tutor
If A=0@348
210
1471Aand B=0@206
304
5231A,find A¡B.A¡B=0@348
210
1471A¡0@206
304
5231A=0@3 ¡ 24 ¡ 08 ¡ 6
2 ¡ 31 ¡ 00 ¡ 4
1 ¡ 54 ¡ 27 ¡ 31A=0@142
¡ 11 ¡ 4
¡42 41A² We can only add or subtract matrices of the same order.
² We add or subtract corresponding elements.
² The result of addition or subtraction is another matrix of the same order.² A§B=(aij)§(bij)=(aij§bij)cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_12\310CamAdd_12.cdr Tuesday, 7 January 2014 5:56:06 PM BRIAN