Cambridge Additional Mathematics

(singke) #1
310 Matrices (Chapter 12)

MATRIX SUBTRACTION


Suppose Thao’s stock levels were

0

@

29 51 19
31 28 32
40 17 29

1

Aand her sales matrix for the week was

0

@

15 12 6
20 16 19
19 8 14

1

A.

Thao will be left with her original stock levels less what she has sold. Clearly, we need to subtract
corresponding elements:
0

@

29 51 19
31 28 32
40 17 29

1


0

@

15 12 6
20 16 19
19 8 14

1

A=

0

@

14 39 13
11 12 13
21 9 15

1

A

Tosubtractmatrices, they must be of thesame order, and wesubtract
corresponding elements.

Summary:

Example 2 Self Tutor


If A=

μ
123
654


, B=

μ
216
035


, and C=

μ
31
24


, find:

a A+B b A+C

a A+B=

μ
123
654


+

μ
216
035


=

μ
1+2 2+1 3+6
6+0 5+3 4+5


=

μ
339
689


b A+C cannot be found as the
matrices do not have the same
order.

Example 3 Self Tutor


If A=

0

@

348
210
147

1

Aand B=

0

@

206
304
523

1

A,

find A¡B.

A¡B=

0

@

348
210
147

1


0

@

206
304
523

1

A

=

0

@

3 ¡ 24 ¡ 08 ¡ 6
2 ¡ 31 ¡ 00 ¡ 4
1 ¡ 54 ¡ 27 ¡ 3

1

A

=

0

@

142
¡ 11 ¡ 4
¡42 4

1

A

² We can only add or subtract matrices of the same order.
² We add or subtract corresponding elements.
² The result of addition or subtraction is another matrix of the same order.

² A§B=(aij)§(bij)=(aij§bij)

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_12\310CamAdd_12.cdr Tuesday, 7 January 2014 5:56:06 PM BRIAN

Free download pdf