312 Matrices (Chapter 12)8aFor A=μ
¡ 10
15¶
, B=μ
34
¡ 1 ¡ 2¶
, and C=μ
4 ¡ 1
¡ 13¶
, find (A+B)+Cand A+(B+C).
b Prove that, ifA,B, andCare any 2 £ 2 matrices, then (A+B)+C=A+(B+C).Hint: Let A=μ
ab
cd¶
, B=μ
pq
rs¶
, and C=μ
wx
yz¶
.If A=(aij) has order m£n, andkis a scalar, then kA=(kaij).
So, to findkA, we multiply each element inAbyk.
The result is another matrix of order m£n.Example 4 Self Tutor
IfAisμ
125
201¶
, find:a 3 A b^12 Aa 3 A=3μ
125
201¶=μ
3 £ 13 £ 23 £ 5
3 £ 23 £ 03 £ 1¶=μ
3615
60 3¶b^12 A=^12μ
125
201¶=Ã
1
2 £^11
2 £^21
2 £^5
1
2 £^21
2 £^01
2 £^1!=Ã 1
2 121
2(^1012)
!
We use capital letters for
matrices and lower-case
letters for scalars.
MULTIPLES OF MATRICES
In the pantry there are 6 cans of peaches, 4 cans of apricots, and 8 cans of pears. We represent this by thecolumn vector C=0@6
4
81A.If we doubled the cans in the pantry, we would have0@12
8
161A which is C+C or 2 C.Notice that to get 2 CfromCwe simply multiply all the matrix elements by 2.Likewise, trebling the fruit cans in the pantry gives 3 C=0
@3 £ 6
3 £ 4
3 £ 81
A=0
@18
12
241
Aand halving them gives^12 C=0
B
@1
2 £^6
1
2 £^4
1
2 £^81
C
A=0@3
2
41A.cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_12\312CamAdd_12.cdr Tuesday, 7 January 2014 5:56:21 PM BRIAN