Cambridge Additional Mathematics

(singke) #1
312 Matrices (Chapter 12)

8aFor A=

μ
¡ 10
15


, B=

μ
34
¡ 1 ¡ 2


, and C=

μ
4 ¡ 1
¡ 13


, find (A+B)+C

and A+(B+C).
b Prove that, ifA,B, andCare any 2 £ 2 matrices, then (A+B)+C=A+(B+C).

Hint: Let A=

μ
ab
cd


, B=

μ
pq
rs


, and C=

μ
wx
yz


.

If A=(aij) has order m£n, andkis a scalar, then kA=(kaij).
So, to findkA, we multiply each element inAbyk.
The result is another matrix of order m£n.

Example 4 Self Tutor


IfAis

μ
125
201


, find:

a 3 A b^12 A

a 3 A=3

μ
125
201


=

μ
3 £ 13 £ 23 £ 5
3 £ 23 £ 03 £ 1


=

μ
3615
60 3


b^12 A=^12

μ
125
201


=

Ã
1
2 £^1

1
2 £^2

1
2 £^5
1
2 £^2

1
2 £^0

1
2 £^1

!

=

à 1
2 12

1
2

(^1012)
!
We use capital letters for
matrices and lower-case
letters for scalars.


MULTIPLES OF MATRICES


In the pantry there are 6 cans of peaches, 4 cans of apricots, and 8 cans of pears. We represent this by the

column vector C=

0

@

6
4
8

1

A.

If we doubled the cans in the pantry, we would have

0

@

12
8
16

1

A which is C+C or 2 C.

Notice that to get 2 CfromCwe simply multiply all the matrix elements by 2.

Likewise, trebling the fruit cans in the pantry gives 3 C=

0
@

3 £ 6
3 £ 4
3 £ 8

1
A=

0
@

18
12
24

1
A

and halving them gives^12 C=

0
B
@

1
2 £^6
1
2 £^4
1
2 £^8

1
C
A=

0

@

3
2
4

1

A.

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_12\312CamAdd_12.cdr Tuesday, 7 January 2014 5:56:21 PM BRIAN

Free download pdf