312 Matrices (Chapter 12)
8aFor A=
μ
¡ 10
15
¶
, B=
μ
34
¡ 1 ¡ 2
¶
, and C=
μ
4 ¡ 1
¡ 13
¶
, find (A+B)+C
and A+(B+C).
b Prove that, ifA,B, andCare any 2 £ 2 matrices, then (A+B)+C=A+(B+C).
Hint: Let A=
μ
ab
cd
¶
, B=
μ
pq
rs
¶
, and C=
μ
wx
yz
¶
.
If A=(aij) has order m£n, andkis a scalar, then kA=(kaij).
So, to findkA, we multiply each element inAbyk.
The result is another matrix of order m£n.
Example 4 Self Tutor
IfAis
μ
125
201
¶
, find:
a 3 A b^12 A
a 3 A=3
μ
125
201
¶
=
μ
3 £ 13 £ 23 £ 5
3 £ 23 £ 03 £ 1
¶
=
μ
3615
60 3
¶
b^12 A=^12
μ
125
201
¶
=
Ã
1
2 £^1
1
2 £^2
1
2 £^5
1
2 £^2
1
2 £^0
1
2 £^1
!
=
à 1
2 12
1
2
(^1012)
!
We use capital letters for
matrices and lower-case
letters for scalars.
MULTIPLES OF MATRICES
In the pantry there are 6 cans of peaches, 4 cans of apricots, and 8 cans of pears. We represent this by the
column vector C=
0
@
6
4
8
1
A.
If we doubled the cans in the pantry, we would have
0
@
12
8
16
1
A which is C+C or 2 C.
Notice that to get 2 CfromCwe simply multiply all the matrix elements by 2.
Likewise, trebling the fruit cans in the pantry gives 3 C=
0
@
3 £ 6
3 £ 4
3 £ 8
1
A=
0
@
18
12
24
1
A
and halving them gives^12 C=
0
B
@
1
2 £^6
1
2 £^4
1
2 £^8
1
C
A=
0
@
3
2
4
1
A.
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_12\312CamAdd_12.cdr Tuesday, 7 January 2014 5:56:21 PM BRIAN