Matrices (Chapter 12) 323
The real numbers 5 and^15 are calledmultiplicative inversesbecause when they are multiplied together, the
result is the multiplicative identity 1 : 5 £^15 =^15 £5=1
For the matrices
μ
25
13
¶
and
μ
3 ¡ 5
¡ 12
¶
, we notice that
μ
25
13
¶μ
3 ¡ 5
¡ 12
¶
=
μ
10
01
¶
=I
and
μ
3 ¡ 5
¡ 12
¶μ
25
13
¶
=
μ
10
01
¶
=I.
We say that
μ
25
13
¶
and
μ
3 ¡ 5
¡ 12
¶
aremultiplicative inversesof each other.
Themultiplicative inverseofA, denotedA¡^1 , satisfies AA¡^1 =A¡^1 A=I.
To find the multiplicative inverse of a matrixA, we need a matrix which, when multiplied byA, gives the
identity matrixI.
We will now determine how to find the inverse of a matrixA.
Suppose A=
μ
ab
cd
¶
and A¡^1 =
μ
wx
yz
¶
) AA¡^1 =
μ
ab
cd
¶μ
wx
yz
¶
=I
)
μ
aw+by ax+bz
cw+dy cx+dz
¶
=
μ
10
01
¶
)
½
aw+by=1 .... (1)
cw+dy=0 .... (2)
and
½
ax+bz=0 .... (3)
cx+dz=1 .... (4)
Solving (1) and (2) simultaneously forwandygives: w=
d
ad¡bc
and y=
¡c
ad¡bc
.
Solving (3) and (4) simultaneously forxandzgives: x=
¡b
ad¡bc
and z=
a
ad¡bc
.
So, if A=
μ
ab
cd
¶
where ad¡bc 6 =0, then A¡^1 =
1
ad¡bc
μ
d ¡b
¡ca
¶
.
In this case A¡^1 A=
1
ad¡bc
μ
d ¡b
¡ca
¶μ
ab
cd
¶
=
1
ad¡bc
μ
ad¡bc bd¡bd
ac¡ac ¡bc+ad
¶
=
μ
10
01
¶
=I also,
so A¡^1 A=AA¡^1 =I
D The inverse of a × matrix
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_12\323CamAdd_12.cdr Tuesday, 7 January 2014 6:02:41 PM BRIAN