330 Matrices (Chapter 12)Review set 12A
#endboxedheading1 If A=μ
32
0 ¡ 1¶
and B=μ
10
¡ 24¶
, find:a A+B b 3 A c ¡ 2 B d A¡B
e B¡ 2 A f 3 A¡ 2 B g AB h BA
i A¡^1 j A^2 k ABA l (AB)¡^12 Finda,b,c, anddif:aμ
ab¡ 2
cd¶
=μ
¡a 3
2 ¡c ¡ 4¶
bμ
32 a
b ¡ 2¶
+μ
b ¡a
cd¶
=μ
a 2
26¶3 WriteYin terms ofA,B, andC:
a B¡Y=A b 2 Y+C=A c AY=B
d YB=C e C¡AY=B f AY¡^1 =B4 Susan keeps 3 hens in a pen. She calls them Anya, Betsy,
and Charise. Each week the hens lay eggs according to
the matrixL=0@a
b
c1A.Write, in terms ofL, a matrix to describe:
a the eggs laid by the hens over a 4 week period
b the eggs each hen loses each fortnight when Susan
collects the eggs.5 Suppose A=μ
¡ 23
4 ¡ 1¶
, B=μ
¡ 79
9 ¡ 3¶
, and C=μ
¡ 103
021¶
.Evaluate, if possible:
a 2 A¡ 2 B b AC c CB6 Given that all matrices are 2 £ 2 andIis the identity matrix, expand and simplify:
a A(I¡A) b (A¡B)(B+A) c (2A¡I)^27 If A^2 =5A+2I, writeA^3 andA^4 in the form rA+sI.8 If A=μ
2 ¡ 1
32¶
, find constantsaandbsuch that A^2 =aA+bI.9 Find, if possible, the inverse matrix of:aμ
68
57¶
bμ
4 ¡ 3
8 ¡ 6¶
cμ
11 5
¡ 6 ¡ 3¶10 For what values ofkdoes½
x+4y=2
kx+3y=¡ 6have a unique solution?cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_12\330CamAdd_12.cdr Wednesday, 8 January 2014 9:40:53 AM BRIAN