350 Introduction to differential calculus (Chapter 13)THE CHAIN RULE
If y=g(u) where u=f(x) thendy
dx=dy
dudu
dx.This rule is extremely important and enables us to differentiate complicated functions much faster.
For example, for any function f(x):If y=[f(x)]n thendy
dx=n[f(x)]n¡^1 £f^0 (x).Example 10 Self Tutor
Find
dy
dx
if:a y=(x^2 ¡ 2 x)^4 b y=
4
p
1 ¡ 2 xa y=(x^2 ¡ 2 x)^4
) y=u^4 where u=x^2 ¡ 2 xNow
dy
dx
=
dy
dudu
dx
fchain ruleg=4u^3 ( 2 x¡ 2 )
=4(x^2 ¡ 2 x)^3 (2x¡2)b y=
4
p
1 ¡ 2 x) y=4u
¡^12
where u=1¡ 2 xNow
dy
dx
=
dy
dudu
dx
fchain ruleg=4£(¡^12 u
¡^32
)£(¡2)=4u¡^32= 4(1¡ 2 x)¡^32EXERCISE 13F.2
1 Write in the form aun, clearly stating whatuis:a
1
(2x¡1)^2bp
x^2 ¡ 3 x c
2
p
2 ¡x^2d^3p
x^3 ¡x^2 e^4
(3¡x)^3f^10
x^2 ¡ 32 Find the gradient function
dy
dxfor:a y=(4x¡5)^2 b y=
1
5 ¡ 2 x
c y=p
3 x¡x^2d y=(1¡ 3 x)^4 e y= 6(5¡x)^3 f y=^3p
2 x^3 ¡x^2g y=
6
(5x¡4)^2
h y=
4
3 x¡x^2
i y=2³
x^2 ¡
2
x́ 3The brackets around
22 x¡ are essential.cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_13\350CamAdd_13.cdr Tuesday, 7 January 2014 9:53:32 AM BRIAN