Introduction to differential calculus (Chapter 13) 357We have already shown that if f(x)=bx then f^0 (x)=bxμ
lim
h! 0bh¡ 1
h¶
.So if f^0 (x)=bx then we require lim
h! 0bh¡ 1
h
=1.) lim
h! 0bh= lim
h! 0(1 +h)Letting h=
1
n, we notice that
1
n! 0 if n!1) lim
n!1
b1
n= lim
n!1³
1+
1
ń) b= lim
n!1³
1+
1
ńn
if this limit existsWe found that as n!1,
³
1+^1
ńn
! 2 :718 281 828 459 045 235::::and this irrational number is the natural exponentiale.We now have: If f(x)=ex then f^0 (x)=ex.THE DERIVATIVE OF ef(x)
The functions e¡x, e^2 x+3, and e¡x2
all have the form ef(x).Since ex> 0 for allx, ef(x)> 0 for allx, no matter what the function f(x).Suppose y=ef(x)=eu where u=f(x).Now
dy
dx=
dy
dudu
dxfchain ruleg=eu
du
dx
=ef(x)£f^0 (x)Function Derivative
ex ex
ef(x) ef(x)£f^0 (x)Example 13 Self Tutor
Find the gradient function foryequal to:
a 2 ex+e¡^3 x b x^2 e¡x c
e^2 x
xa If y=2ex+e¡^3 x then
dy
dx=2ex+e¡^3 x(¡3)=2ex¡ 3 e¡^3 xb If y=x^2 e¡x then
dy
dx
=2xe¡x+x^2 e¡x(¡1)
=2xe¡x¡x^2 e¡xfproduct rulege
x
xex1-xis sometimes written
as. For example,
.exp( )
exp(1 ) =¡We have in fact already seen this limit inChapter 4
Discovery 2on page 123.4037 Cambridge
cyan magenta yellow black Additional Mathematics(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_13\357CamAdd_13.cdr Friday, 4 April 2014 5:25:30 PM BRIAN