DEMO
3
2
q
A q
B
a
b
q
B
A
2 m
3 m
0° 90°
- 41.1° μ
d
d__L~
q
20 cm
10 cm
20 cm
Applications of differential calculus (Chapter 14) 395
Step 5: The minimum material is used to make the container when x=20and y=
4000
202
=10.
Step 6: The most economical shape has a square base
20 cm£ 20 cm, and height 10 cm.
Example 20 Self Tutor
Two corridors meet at right angles and are 2 m and 3 m wide
respectively. μis the angle marked on the given figure. [AB]
is a thin metal tube which must be kept horizontal and cannot
be bent as it moves around the corner from one corridor to the
other.
a Show that the length AB is given by L=
3
cosμ
+
2
sinμ
.
b Show that
dL
dμ
=0when μ= tan¡^1
³
3
q
2
3
́
¼ 41 : 1 ±.
c FindLwhen μ= tan¡^1
³
3
q
2
3
́
and comment on the significance of this value.
a cosμ=
3
a
and
) a=
3
cosμ
and
) L=a+b=
3
cosμ
+
2
sinμ
sinμ=
2
b
b=
2
sinμ
b L= 3[cosμ]¡^1 + 2[sinμ]¡^1
)
dL
dμ
=¡3[cosμ]¡^2 (¡sinμ)¡2[sinμ]¡^2 cosμ
=
3 sinμ
cos^2 μ
¡
2 cosμ
sin^2 μ
=
3 sin^3 μ¡2 cos^3 μ
cos^2 μsin^2 μ
Thus
dL
dμ
=0 when 3 sin^3 μ= 2 cos^3 μ
) tan^3 μ=^23
) tanμ=^3
q
2
3
) μ= tan¡^1
μ
3
q
2
3
¶
¼ 41 : 1 ±
c Sign diagram of
dL
dμ
:
When μ=30±,
dL
dμ
¼¡ 4 : 93 < 0
When μ=60±,
dL
dμ
¼ 9 : 06 > 0
Thus, AB is minimised when μ¼ 41 : 1 ±. At this time L¼ 7 : 02 metres. Ignoring the width of
the rod, the greatest length of rod able to be horizontally carried around the corner is 7 : 02 m.
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_14\395CamAdd_14.cdr Monday, 7 April 2014 12:19:28 PM BRIAN