Cambridge Additional Mathematics

(singke) #1
DEMO

3

2
q

A q

B

a

b

q

B

A

2 m

3 m

0° 90°




    • 41.1° μ




d
d__L~
q

20 cm

10 cm

20 cm

Applications of differential calculus (Chapter 14) 395

Step 5: The minimum material is used to make the container when x=20and y=
4000
202
=10.

Step 6: The most economical shape has a square base
20 cm£ 20 cm, and height 10 cm.

Example 20 Self Tutor


Two corridors meet at right angles and are 2 m and 3 m wide
respectively. μis the angle marked on the given figure. [AB]
is a thin metal tube which must be kept horizontal and cannot
be bent as it moves around the corner from one corridor to the
other.
a Show that the length AB is given by L=
3
cosμ
+
2
sinμ
.

b Show that
dL

=0when μ= tan¡^1

³
3

q
2
3

́
¼ 41 : 1 ±.

c FindLwhen μ= tan¡^1

³
3

q
2
3

́
and comment on the significance of this value.

a cosμ=
3
a
and

) a=
3
cosμ

and

) L=a+b=
3
cosμ
+
2
sinμ

sinμ=
2
b
b=
2
sinμ

b L= 3[cosμ]¡^1 + 2[sinμ]¡^1

)
dL

=¡3[cosμ]¡^2 (¡sinμ)¡2[sinμ]¡^2 cosμ

=
3 sinμ
cos^2 μ

¡
2 cosμ
sin^2 μ
=
3 sin^3 μ¡2 cos^3 μ
cos^2 μsin^2 μ

Thus
dL

=0 when 3 sin^3 μ= 2 cos^3 μ
) tan^3 μ=^23

) tanμ=^3

q
2
3

) μ= tan¡^1

μ
3

q
2
3


¼ 41 : 1 ±

c Sign diagram of
dL

:

When μ=30±,
dL

¼¡ 4 : 93 < 0

When μ=60±,
dL

¼ 9 : 06 > 0

Thus, AB is minimised when μ¼ 41 : 1 ±. At this time L¼ 7 : 02 metres. Ignoring the width of
the rod, the greatest length of rod able to be horizontally carried around the corner is 7 : 02 m.

4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_14\395CamAdd_14.cdr Monday, 7 April 2014 12:19:28 PM BRIAN

Free download pdf