DEMO32
qA qBabqBA2 m3 m0° 90°
- 41.1° μ
d
d__L~
q20 cm10 cm20 cmApplications of differential calculus (Chapter 14) 395Step 5: The minimum material is used to make the container when x=20and y=
4000
202
=10.Step 6: The most economical shape has a square base
20 cm£ 20 cm, and height 10 cm.Example 20 Self Tutor
Two corridors meet at right angles and are 2 m and 3 m wide
respectively. μis the angle marked on the given figure. [AB]
is a thin metal tube which must be kept horizontal and cannot
be bent as it moves around the corner from one corridor to the
other.
a Show that the length AB is given by L=
3
cosμ
+
2
sinμ
.b Show that
dL
dμ
=0when μ= tan¡^1³
3q
2
3́
¼ 41 : 1 ±.c FindLwhen μ= tan¡^1³
3q
2
3́
and comment on the significance of this value.a cosμ=
3
a
and) a=
3
cosμand) L=a+b=
3
cosμ
+
2
sinμsinμ=
2
b
b=
2
sinμb L= 3[cosμ]¡^1 + 2[sinμ]¡^1)
dL
dμ
=¡3[cosμ]¡^2 (¡sinμ)¡2[sinμ]¡^2 cosμ=
3 sinμ
cos^2 μ¡
2 cosμ
sin^2 μ
=
3 sin^3 μ¡2 cos^3 μ
cos^2 μsin^2 μThus
dL
dμ
=0 when 3 sin^3 μ= 2 cos^3 μ
) tan^3 μ=^23) tanμ=^3q
2
3) μ= tan¡^1μ
3q
2
3¶
¼ 41 : 1 ±c Sign diagram of
dL
dμ
:When μ=30±,
dL
dμ
¼¡ 4 : 93 < 0When μ=60±,
dL
dμ
¼ 9 : 06 > 0Thus, AB is minimised when μ¼ 41 : 1 ±. At this time L¼ 7 : 02 metres. Ignoring the width of
the rod, the greatest length of rod able to be horizontally carried around the corner is 7 : 02 m.4037 Cambridge
cyan magenta yellow black Additional Mathematics(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_14\395CamAdd_14.cdr Monday, 7 April 2014 12:19:28 PM BRIAN