Integration (Chapter 15) 413
THE DEFINITE INTEGRAL
Consider the lower and upper rectangle sums for a function which is positive and increasing on the interval
a 6 x 6 b.
We divide the interval intonsubintervals, each of width w=
b¡a
n
.
Since the function is increasing:
AL=wf(x 0 )+wf(x 1 )+::::+wf(xn¡ 2 )+wf(xn¡ 1 )=w
nX¡ 1
i=0
f(xi)
AU=wf(x 1 )+wf(x 2 )+::::+wf(xn¡ 1 )+wf(xn)=w
Xn
i=1
f(xi)
Notice that AU¡AL=w(f(xn)¡f(x 0 ))
=
1
n
(b¡a)(f(b)¡f(a))
) lim
n!1
(AU¡AL)=0 fsince lim
n!1
1
n
=0g
) lim
n!1
AL= lim
n!1
AU fwhen both limits existg
) since AL<A<AU for all values ofn, it follows that
lim
n!1
AL=A= lim
n!1
AU
This fact is true for all positive continuous functions on an interval a 6 x 6 b.
The valueAis known as the “definite integralof f(x) fromatob”, written A=
Zb
a
f(x)dx.
If f(x)> 0 for all a 6 x 6 b, then
Zb
a
f(x)dx is equal to the shaded area.
lim
n!1
means we
have infinitely
many subintervals.
x
y
ab
y = f(x)
O
A
abx 1 x 2 x 3
x 0
xn-2
xn-1xn
y
x
y = (x)f
....
abx 1 x 2 x 3 O
x 0
xn-2
xn-1xn
y
x
y = f(x)
....
O
Pn
i=1
ai=a 1 +a 2 +::::+an
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_15\413CamAdd_15.cdr Monday, 7 April 2014 4:03:07 PM BRIAN