Integration (Chapter 15) 413THE DEFINITE INTEGRAL
Consider the lower and upper rectangle sums for a function which is positive and increasing on the interval
a 6 x 6 b.We divide the interval intonsubintervals, each of width w=
b¡a
n
.Since the function is increasing:AL=wf(x 0 )+wf(x 1 )+::::+wf(xn¡ 2 )+wf(xn¡ 1 )=wnX¡ 1i=0f(xi)AU=wf(x 1 )+wf(x 2 )+::::+wf(xn¡ 1 )+wf(xn)=wXni=1f(xi)Notice that AU¡AL=w(f(xn)¡f(x 0 ))=
1
n
(b¡a)(f(b)¡f(a))) lim
n!1
(AU¡AL)=0 fsince lim
n!11
n
=0g) lim
n!1
AL= lim
n!1
AU fwhen both limits existg) since AL<A<AU for all values ofn, it follows that
lim
n!1
AL=A= lim
n!1
AUThis fact is true for all positive continuous functions on an interval a 6 x 6 b.The valueAis known as the “definite integralof f(x) fromatob”, written A=Zbaf(x)dx.If f(x)> 0 for all a 6 x 6 b, then
Zbaf(x)dx is equal to the shaded area.lim
n!1means we
have infinitely
many subintervals.xyaby = f(x)OAabx 1 x 2 x 3
x 0xn-2
xn-1xnyxy = (x)f....abx 1 x 2 x 3 O
x 0xn-2
xn-1xnyxy = f(x)....OPn
i=1ai=a 1 +a 2 +::::+an4037 Cambridge
cyan magenta yellow black Additional Mathematics(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_15\413CamAdd_15.cdr Monday, 7 April 2014 4:03:07 PM BRIAN