Cambridge Additional Mathematics

(singke) #1
Integration (Chapter 15) 413

THE DEFINITE INTEGRAL


Consider the lower and upper rectangle sums for a function which is positive and increasing on the interval
a 6 x 6 b.

We divide the interval intonsubintervals, each of width w=
b¡a
n
.

Since the function is increasing:

AL=wf(x 0 )+wf(x 1 )+::::+wf(xn¡ 2 )+wf(xn¡ 1 )=w

nX¡ 1

i=0

f(xi)

AU=wf(x 1 )+wf(x 2 )+::::+wf(xn¡ 1 )+wf(xn)=w

Xn

i=1

f(xi)

Notice that AU¡AL=w(f(xn)¡f(x 0 ))

=
1
n
(b¡a)(f(b)¡f(a))

) lim
n!1
(AU¡AL)=0 fsince lim
n!1

1
n
=0g

) lim
n!1
AL= lim
n!1
AU fwhen both limits existg

) since AL<A<AU for all values ofn, it follows that
lim
n!1
AL=A= lim
n!1
AU

This fact is true for all positive continuous functions on an interval a 6 x 6 b.

The valueAis known as the “definite integralof f(x) fromatob”, written A=

Zb

a

f(x)dx.

If f(x)> 0 for all a 6 x 6 b, then
Zb

a

f(x)dx is equal to the shaded area.

lim
n!1

means we
have infinitely
many subintervals.

x

y

ab

y = f(x)

O

A

abx 1 x 2 x 3
x 0

xn-2
xn-1xn

y

x

y = (x)f

....

abx 1 x 2 x 3 O
x 0

xn-2
xn-1xn

y

x

y = f(x)

....

O

Pn
i=1

ai=a 1 +a 2 +::::+an

4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_15\413CamAdd_15.cdr Monday, 7 April 2014 4:03:07 PM BRIAN

Free download pdf