Integration (Chapter 15) 415
3 The integral
Z 3
¡ 3
e
¡x
2
2
dx is of considerable interest to statisticians.
a Use the graphing package to help sketch y=e
¡x
2
(^2) for ¡ 36 x 63.
b Calculate the upper and lower rectangular sums for the interval 06 x 63 using n= 2250.
c Use the symmetry of y=e
¡x
2
(^2) to find upper and lower rectangular sums for ¡ 36 x 60 for
n= 2250.
d Hence estimate
Z 3
¡ 3
e
¡x
2
(^2) dx.
How accurate is your estimate compared with
p
2 ¼?
Example 2 Self Tutor
Use graphical evidence and
known area facts to find:
a
Z 2
0
(2x+1)dx b
Z 1
0
p
1 ¡x^2 dx
a
Z 2
0
(2x+1)dx
=shaded area
=
¡1+5
2
¢
£ 2
=6
b If y=
p
1 ¡x^2 then y^2 =1¡x^2 and so x^2 +y^2 =1which is the equation of the unit
circle. y=
p
1 ¡x^2 is the upper half.
Z 1
0
p
1 ¡x^2 dx
=shaded area
=^14 (¼r^2 ) where r=1
=¼ 4
4 Use graphical evidence and known area facts to find:
a
Z 3
1
(1 + 4x)dx b
Z 2
¡ 1
(2¡x)dx c
Z 2
¡ 2
p
4 ¡x^2 dx
In many problems in calculus we know the rate of change of one variable with respect to another, but we
do not have a formula which relates the variables. In other words, we know
dy
dx
, but we need to knowy
in terms ofx.
B Antidifferentiation
AREA
FINDER
x
y
y=2x+1
2
5
3
1
(2 5),
O
-1 1
1
y
x
y = ~`1# -` #x 2
O
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_15\415CamAdd_15.cdr Monday, 7 April 2014 3:57:53 PM BRIAN