Integration (Chapter 15) 421
EXERCISE 15C
1 Use the fundamental theorem of calculus to find the area between:
a thex-axis and y=x^3 from x=0to x=1
b thex-axis and y=x^2 from x=1to x=2
c thex-axis and y=
p
x from x=0to x=1.
2 Use the fundamental theorem of calculus to show that:
a
Za
a
f(x)dx=0and explain the result graphically
b
Zb
a
cdx=c(b¡a) wherecis a constant
c
Za
b
f(x)dx=¡
Zb
a
f(x)dx
d
Zb
a
cf(x)dx=c
Zb
a
f(x)dx wherecis a constant
e
Zb
a
[f(x)+g(x)]dx=
Zb
a
f(x)dx+
Zb
a
g(x)dx
3 Use the fundamental theorem of calculus to find the area between thex-axis and:
a y=x^3 from x=1to x=2
b y=x^2 +3x+2from x=1to x=3
c y=
p
x from x=1to x=2
d y=ex from x=0to x=1: 5
e y=
1
p
x
from x=1to x=4
4aUse the fundamental theorem of calculus to show that
Zb
a
(¡f(x))dx=¡
Zb
a
f(x)dx
b Hence show that if f(x) 60 for allxon
a 6 x 6 b then the shaded area=¡
Zb
a
f(x)dx.
c Calculate the following integrals, and give graphical interpretations of your answers:
i
Z 1
0
(¡x^2 )dx ii
Z 1
0
(x^2 ¡x)dx iii
Z 0
¡ 2
3 xdx
d Use graphical evidence and known area facts to find
Z 2
0
³
¡
p
4 ¡x^2
́
dx.
y
ab x
y = f(x)
O
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_15\421CamAdd_15.cdr Monday, 7 April 2014 3:58:35 PM BRIAN