Integration (Chapter 15) 421EXERCISE 15C
1 Use the fundamental theorem of calculus to find the area between:
a thex-axis and y=x^3 from x=0to x=1
b thex-axis and y=x^2 from x=1to x=2
c thex-axis and y=p
x from x=0to x=1.2 Use the fundamental theorem of calculus to show that:aZaaf(x)dx=0and explain the result graphicallybZbacdx=c(b¡a) wherecis a constantcZabf(x)dx=¡Zbaf(x)dxdZbacf(x)dx=cZbaf(x)dx wherecis a constanteZba[f(x)+g(x)]dx=Zbaf(x)dx+Zbag(x)dx3 Use the fundamental theorem of calculus to find the area between thex-axis and:
a y=x^3 from x=1to x=2
b y=x^2 +3x+2from x=1to x=3
c y=p
x from x=1to x=2
d y=ex from x=0to x=1: 5e y=
1
p
x
from x=1to x=44aUse the fundamental theorem of calculus to show that
Zba(¡f(x))dx=¡Zbaf(x)dxb Hence show that if f(x) 60 for allxona 6 x 6 b then the shaded area=¡Zbaf(x)dx.c Calculate the following integrals, and give graphical interpretations of your answers:iZ 10(¡x^2 )dx iiZ 10(x^2 ¡x)dx iiiZ 0¡ 23 xdxd Use graphical evidence and known area facts to findZ 20³
¡p
4 ¡x^2́
dx.yab xy = f(x)O4037 Cambridge
cyan magenta yellow black Additional Mathematics(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_15\421CamAdd_15.cdr Monday, 7 April 2014 3:58:35 PM BRIAN