432 Integration (Chapter 15)
Example 13 Self Tutor
Find:
a
Z 3
1
(x^2 +2)dx b
Z ¼
3
0
sinxdx
a
Z 3
1
(x^2 +2)dx
=
·
x^3
3
+2x
̧ 3
1
=
³
33
3 + 2(3)
́
¡
³
13
3 + 2(1)
́
=(9+6)¡(^13 +2)
=12^23
b
Z ¼
3
0
sinxdx
=[¡cosx]
¼
3
0
=(¡cos¼ 3 )¡(¡cos 0)
=¡^12 +1
=^12
EXERCISE 15G
Use questions 1 to 4 to check the properties of definite integrals.
1 Find: a
Z 4
1
p
xdxand
Z 4
1
(¡
p
x)dx b
Z 1
0
x^7 dx and
Z 1
0
(¡x^7 )dx
2 Find: a
Z 1
0
x^2 dx b
Z 2
1
x^2 dx c
Z 2
0
x^2 dx d
Z 1
0
3 x^2 dx
3 Find: a
Z 2
0
(x^3 ¡ 4 x)dx b
Z 3
2
(x^3 ¡ 4 x)dx c
Z 3
0
(x^3 ¡ 4 x)dx
4 Find: a
Z 1
0
x^2 dx b
Z 1
0
p
xdx c
Z 1
0
(x^2 +
p
x)dx
5 Evaluate:
a
Z 1
0
x^3 dx b
Z 2
0
(x^2 ¡x)dx c
Z 1
0
exdx
d
Z ¼
6
0
cosxdx e
Z 4
1
μ
x¡
3
p
x
¶
dx f
Z 9
4
x¡ 3
p
x
dx
g
Z 3
1
1
x
dx h
Z¼
2
¼
3
sinxdx i
Z 2
1
(e¡x+1)^2 dx
j
Z 6
2
1
p
2 x¡ 3
dx k
Z 1
0
e^1 ¡xdx l
Z ¼
6
0
sin(3x)dx
6 Findmsuch that
Z 2 m
m
(2x¡1)dx=4.
cyan magenta yellow black
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_15\432CamAdd_15.cdr Monday, 7 April 2014 3:59:55 PM BRIAN