432 Integration (Chapter 15)Example 13 Self Tutor
Find:aZ 31(x^2 +2)dx bZ ¼
3
0sinxdxaZ 31(x^2 +2)dx=·
x^3
3+2x̧ 31
=³
33
3 + 2(3)́
¡³
13
3 + 2(1)́=(9+6)¡(^13 +2)
=12^23bZ ¼
3
0sinxdx=[¡cosx]¼
3
0
=(¡cos¼ 3 )¡(¡cos 0)
=¡^12 +1
=^12EXERCISE 15G
Use questions 1 to 4 to check the properties of definite integrals.1 Find: aZ 41p
xdxandZ 41(¡p
x)dx bZ 10x^7 dx andZ 10(¡x^7 )dx2 Find: aZ 10x^2 dx bZ 21x^2 dx cZ 20x^2 dx dZ 103 x^2 dx3 Find: aZ 20(x^3 ¡ 4 x)dx bZ 32(x^3 ¡ 4 x)dx cZ 30(x^3 ¡ 4 x)dx4 Find: aZ 10x^2 dx bZ 10p
xdx cZ 10(x^2 +p
x)dx5 Evaluate:aZ 10x^3 dx bZ 20(x^2 ¡x)dx cZ 10exdxdZ ¼
6
0cosxdx eZ 41μ
x¡
3
p
x¶
dx fZ 94x¡ 3
p
x
dxgZ 311
xdx hZ¼
2
¼
3sinxdx iZ 21(e¡x+1)^2 dxjZ 621
p
2 x¡ 3dx kZ 10e^1 ¡xdx lZ ¼
6
0sin(3x)dx6 Findmsuch thatZ 2 mm(2x¡1)dx=4.cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_15\432CamAdd_15.cdr Monday, 7 April 2014 3:59:55 PM BRIAN