Integration (Chapter 15) 435
y
x
f(x) = 4 - x 2
O 2
6 Find the values ofbsuch that
Zb
0
cosxdx=
1
p
2
, 0 <b<¼.
7 Findyif:
a
dy
dx
=(x^2 ¡1)^2 b
dy
dx
= 400¡ 20 e
¡x 2
8 A curve y=f(x) has f^00 (x)=18x+10. Find f(x) if f(0) =¡ 1 and f(1) = 13.
9 If
Za
0
e^1 ¡^2 xdx=
e
4
, findain the form lnk.
10 Suppose f^00 (x)=3x^2 +2x and f(0) =f(2) = 3. Find:
a f(x) b the equation of the normal to y=f(x) at x=2.
11 a Find (ex+2)^3 using the binomial expansion.
b Hence find the exact value of
Z 1
0
(ex+2)^3 dx.
Review set 15B
1aUsefourupper and lower rectangles to find rational
numbersAandBsuch that:
A<
Z 2
0
(4¡x^2 )dx < B.
b Hence, find a good estimate for
Z 2
0
(4¡x^2 )dx.
2 Find:
a
Z
(2e¡x+3)dx b
Z μ
p
x¡
1
p
x
¶
dx c
Z ¡
3+e^2 x¡^1
¢ 2
dx
3 Given that f^0 (x)=x^2 ¡ 3 x+2and f(1) = 3, find f(x).
4 Find the exact value of
Z 3
2
1
p
3 x¡ 4
dx.
5 By differentiating (3x^2 +x)^3 , find
Z
(3x^2 +x)^2 (6x+1)dx.
6 If
Z 4
1
f(x)dx=3, determine:
a
Z 4
1
(f(x)+1)dx b
Z 2
1
f(x)dx¡
Z 2
4
f(x)dx
7 Given that f^00 (x) = 2 sin(2x), f^0 (¼ 2 )=0, and f(0) = 3, find the exact value of f(¼ 2 ).
8 Find
d
dx
(e¡^2 xsinx) and hence find
Z¼
2
0
£
e¡^2 x(cosx¡2 sinx)
¤
dx
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_15\435CamAdd_15.cdr Monday, 7 April 2014 4:00:17 PM BRIAN