Applications of integration (Chapter 16) 439
Example 2 Self Tutor
Find the area of the region enclosed by y=x^2 +1, thex-axis,x=1,
and x=2.
Area=
Z 2
1
(x^2 +1)dx
=
·
x^3
3
+x
̧ 2
1
=
¡ 8
3 +2
¢
¡
¡ 1
3 +1
¢
=3^13 units^2
2 Find the area of the region bounded by:
a y=x^2 , thex-axis, and x=1
b y= sinx, thex-axis, x=0, and x=¼
c y=x^3 , thex-axis, x=1, and x=4
d y=ex, thex-axis, they-axis, and x=1
e thex-axis and the part of y=6+x¡x^2 above thex-axis
f the axes and y=
p
9 ¡x
g y=
1
x^2
, thex-axis, x=1, and x=2
h y=2¡
1
p
x
, thex-axis, and x=4
i y=ex+e¡x, thex-axis, x=¡ 1 , and x=1
Example 3 Self Tutor
Find the area enclosed by one arch of the curve y= sin 2x and thex-axis.
The period of y= sin 2x is^22 ¼=¼, so the first positivex-intercept is¼ 2.
The required area=
Z ¼
2
0
sin 2xdx
=
h
1
2 (¡cos 2x)
i¼ 2
0
=¡^12
h
cos 2x
i¼ 2
0
=¡^12 (cos¼¡cos 0)
=1unit^2
3 Find the area enclosed by one arch of the curve y= cos 3x and thex-axis.
GRAPHING
PACKAGE
It is helpful to
sketch the region.
Use the graphing package
to check your answers.
1 2
y
O x
y=x +1 2
¼ x
y
O w_p
y=sin2x
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_16\439CamAdd_16.cdr Monday, 7 April 2014 4:19:08 PM BRIAN