Cambridge Additional Mathematics

(singke) #1
Applications of integration (Chapter 16) 439

Example 2 Self Tutor


Find the area of the region enclosed by y=x^2 +1, thex-axis,x=1,
and x=2.

Area=

Z 2

1

(x^2 +1)dx

=

·
x^3
3

+x

̧ 2

1
=

¡ 8
3 +2

¢
¡

¡ 1
3 +1

¢

=3^13 units^2

2 Find the area of the region bounded by:
a y=x^2 , thex-axis, and x=1
b y= sinx, thex-axis, x=0, and x=¼
c y=x^3 , thex-axis, x=1, and x=4
d y=ex, thex-axis, they-axis, and x=1
e thex-axis and the part of y=6+x¡x^2 above thex-axis
f the axes and y=

p
9 ¡x

g y=
1
x^2
, thex-axis, x=1, and x=2

h y=2¡
1
p
x
, thex-axis, and x=4

i y=ex+e¡x, thex-axis, x=¡ 1 , and x=1

Example 3 Self Tutor


Find the area enclosed by one arch of the curve y= sin 2x and thex-axis.

The period of y= sin 2x is^22 ¼=¼, so the first positivex-intercept is¼ 2.

The required area=

Z ¼
2
0

sin 2xdx

=

h
1
2 (¡cos 2x)

i¼ 2
0

=¡^12

h
cos 2x

i¼ 2

0
=¡^12 (cos¼¡cos 0)
=1unit^2

3 Find the area enclosed by one arch of the curve y= cos 3x and thex-axis.

GRAPHING
PACKAGE

It is helpful to
sketch the region.

Use the graphing package
to check your answers.

1 2

y

O x

y=x +1 2

¼ x

y

O w_p

y=sin2x

4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_16\439CamAdd_16.cdr Monday, 7 April 2014 4:19:08 PM BRIAN

Free download pdf