Applications of integration (Chapter 16) 447
Example 8 Self Tutor
A particle P moves in a straight line with velocity function v(t)=t^2 ¡ 3 t+2ms¡^1.
a How far does P travel in the first 4 seconds of motion?
b Find the displacement of P after 4 seconds.
a v(t)=s^0 (t)=t^2 ¡ 3 t+2
=(t¡1)(t¡2)
) the sign diagram ofvis:
Since the signs change, P reverses direction at t=1and t=2seconds.
Now s(t)=
Z
(t^2 ¡ 3 t+2)dt=
t^3
3
¡
3 t^2
2
+2t+c
Hence s(0) =cs(1) =^13 ¡^32 +2+c=c+^56
s(2) =^83 ¡6+4+c=c+^23 s(4) =^643 ¡24 + 8 +c=c+5^13
Motion diagram:
) total distance travelled=(c+^56 ¡c)+(c+^56 ¡[c+^23 ]) + (c+5^13 ¡[c+^23 ])
=^56 +^56 ¡^23 +5^13 ¡^23
=5^23 m
b Displacement=final position¡original position
=s(4)¡s(0)
=c+5^13 ¡c
=5^13 m
So, the displacement is 513 m to the right.
EXERCISE 16C.2
1 A particle has velocity function v(t)=1¡ 2 t cm s¡^1 as it moves in a straight line. The particle is
initially 2 cm to the right of O.
a Write a formula for the displacement function s(t).
b Find the total distance travelled in the first second of motion.
c Find the displacement of the particle at the end of one second.
2 Particle P is initially at the origin O. It moves with the velocity function v(t)=t^2 ¡t¡ 2 cm s¡^1.
a Write a formula for the displacement function s(t).
b Find the total distance travelled in the first 3 seconds of motion.
c Find the displacement of the particle at the end of three seconds.
3 An object has velocity function v(t) = cos(2t) ms¡^1 .Ifs(¼ 4 )=1m, determine s(¼ 3 ) exactly.
1
0
t
+
2
c c+Wec+Ty c+5_Qe
4037 Cambridge
cyan magenta yellow black Additional Mathematics
(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_16\447CamAdd_16.cdr Monday, 7 April 2014 4:18:18 PM BRIAN