Cambridge Additional Mathematics

(singke) #1
46 Functions (Chapter 2)

Themodulusorabsolute valueof a real number is its size, ignoring
its sign.
We denote the absolute value ofxbyjxj.

For example, the modulus of 4 is 4 , and the modulus of¡ 9 is 9 .We
write j 4 j=4and j¡ 9 j=9.

Example 7 Self Tutor


If x=¡ 3 , find the value of:

a jxj b xjxj c

̄
̄x^2 +x
̄
̄ d

̄
̄
̄
7 x¡ 1
2

̄
̄
̄

a jxj
=j¡ 3 j
=3

b xjxj
=(¡3)j¡ 3 j
=¡ 3 £ 3
=¡ 9

c

̄
̄x^2 +x
̄
̄

=

̄
̄(¡3)^2 +(¡3)
̄
̄
=j 6 j
=6

d

̄
̄
̄
7 x¡ 1
2

̄
̄
̄

=

̄
̄
̄
7(¡3)¡ 1
2

̄
̄
̄

=j¡ 11 j
=11

EXERCISE 2D.1


1 Find the value of:
a j 5 j b j¡ 5 j c j 7 ¡ 3 j d j 3 ¡ 7 j

e

̄
̄ 22 ¡ 10
̄
̄ f j 15 ¡ 3 £ 5 j g

̄
̄
̄
3 ¡ 1
5+2

̄
̄
̄ h

̄
̄
̄
̄

23
(¡3)^3

̄
̄
̄
̄

2 If x=4, find the value of:

a jx¡ 5 j b j 10 ¡xj c

̄
̄ 3 x¡x^2
̄
̄ d

̄
̄
̄
2 x+1
x¡ 1

̄
̄
̄

3 If x=¡ 2 , find the value of:

a jxj b xjxj c ¡

̄
̄x¡x^2
̄
̄ d j1+3xj
x+1

MODULUS EQUATIONS


The equation jxj=2 has two solutions: x=2and x=¡ 2.

If jxj=a where a> 0 , then x=§a.

If jxj=jbj then x=§b.

We use these rules to solve equations involving the modulus function.

D The modulus function


The absolute value of a
number is always> 0.

Solving modulus equations
is not needed for the syllabus.

cyan magenta yellow black

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_02\046CamAdd_02.cdr Tuesday, 8 April 2014 10:25:17 AM BRIAN

Free download pdf