46 Functions (Chapter 2)Themodulusorabsolute valueof a real number is its size, ignoring
its sign.
We denote the absolute value ofxbyjxj.For example, the modulus of 4 is 4 , and the modulus of¡ 9 is 9 .We
write j 4 j=4and j¡ 9 j=9.Example 7 Self Tutor
If x=¡ 3 , find the value of:a jxj b xjxj c̄
̄x^2 +x
̄
̄ d̄
̄
̄
7 x¡ 1
2̄
̄
̄a jxj
=j¡ 3 j
=3b xjxj
=(¡3)j¡ 3 j
=¡ 3 £ 3
=¡ 9c̄
̄x^2 +x
̄
̄=̄
̄(¡3)^2 +(¡3)
̄
̄
=j 6 j
=6d̄
̄
̄
7 x¡ 1
2̄
̄
̄=̄
̄
̄
7(¡3)¡ 1
2̄
̄
̄=j¡ 11 j
=11EXERCISE 2D.1
1 Find the value of:
a j 5 j b j¡ 5 j c j 7 ¡ 3 j d j 3 ¡ 7 jē
̄ 22 ¡ 10
̄
̄ f j 15 ¡ 3 £ 5 j ḡ
̄
̄
3 ¡ 1
5+2̄
̄
̄ h̄
̄
̄
̄23
(¡3)^3̄
̄
̄
̄2 If x=4, find the value of:a jx¡ 5 j b j 10 ¡xj c̄
̄ 3 x¡x^2
̄
̄ d̄
̄
̄
2 x+1
x¡ 1̄
̄
̄3 If x=¡ 2 , find the value of:a jxj b xjxj c ¡̄
̄x¡x^2
̄
̄ d j1+3xj
x+1MODULUS EQUATIONS
The equation jxj=2 has two solutions: x=2and x=¡ 2.If jxj=a where a> 0 , then x=§a.If jxj=jbj then x=§b.We use these rules to solve equations involving the modulus function.D The modulus function
The absolute value of a
number is always> 0.Solving modulus equations
is not needed for the syllabus.cyan magenta yellow black(^05255075950525507595)
100 100
(^05255075950525507595)
100 100 4037 Cambridge
Additional Mathematics
Y:\HAESE\CAM4037\CamAdd_02\046CamAdd_02.cdr Tuesday, 8 April 2014 10:25:17 AM BRIAN