Cambridge Additional Mathematics

(singke) #1
y

x

(-2 4),

(-2 -3), O

y

x

(-2 1),¡

3

O

y

x

() 32 ,¡
() 31 ,¡

-1

1

O

PRINTABLE
GRAPHS
y

x

2

5
O

y = f(x)

y

x

2

O

y = f(x)

y

x

2

O

y = f(x)

Functions (Chapter 2) 61

7 Draw the graph of y=j 2 x¡ 1 j.
8 Draw a sign diagram for:

a (3x+ 2)(4¡x) b
x¡ 3
(x+2)^2

9 If f(x)=2x¡ 3 and g(x)=x^2 +2, find in simplest form:
a fg(x) b gf(x)
10 If y=f(x) has an inverse, sketch the graph of y=f¡^1 (x).
abc

11 Find f¡^1 (x) given that f(x) is:

a 4 x+2 b
3 ¡ 5 x
4
12 Consider f(x)=x^2 and g(x)=1¡ 6 x.
a Show that f(¡3) =g(¡^43 ). b Find (f±g)(¡2).
c Findxsuch that g(x)=f(5).

13 Given f:x 7! 3 x+6 and h:x 7!
x
3
, show that (f¡^1 ±h¡^1 )(x)=(h±f)¡^1 (x).

Review set 2B


1 Determine whether the following relations are functions. If they are functions, determine whether
they are one-one.
ab

c

4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_02\061CamAdd_02.cdr Thursday, 3 April 2014 4:10:06 PM BRIAN

Free download pdf