Cambridge Additional Mathematics

(singke) #1
Quadratics (Chapter 3) 73

In the quadratic formula, the quantity b^2 ¡ 4 ac under the square root sign is called thediscriminant.
The symboldelta¢is used to represent the discriminant, so ¢=b^2 ¡ 4 ac.

The quadratic formula becomes x=
¡b§

p
¢
2 a
where¢replaces b^2 ¡ 4 ac.

² If ¢=0, x=
¡b
2 a
is theonly solution(arepeatedordouble root)

² If ¢> 0 ,

p
¢is a positive real number, so there aretwo distinct real roots

x=
¡b+

p
¢
2 a
and x=
¡b¡

p
¢
2 a
² If ¢< 0 ,

p
¢is not a real number and so there areno real roots.
² Ifa,b, andcare rational and¢is asquarethen the equation has two rational roots which can be
found by factorisation.

Example 9 Self Tutor


Use the discriminant to determine the nature of the roots of:
a 2 x^2 ¡ 2 x+3=0 b 3 x^2 ¡ 4 x¡2=0

a ¢=b^2 ¡ 4 ac
=(¡2)^2 ¡4(2)(3)
=¡ 20
Since ¢< 0 , there are no real roots.

b ¢=b^2 ¡ 4 ac
=(¡4)^2 ¡4(3)(¡2)
=40
Since ¢> 0 , but 40 is not a square,
there are 2 distinct irrational roots.

Example 10 Self Tutor


Consider x^2 ¡ 2 x+m=0. Find the discriminant¢, and hence find the values ofmfor which
the equation has:
a a repeated root b 2 distinct real roots c no real roots.

x^2 ¡ 2 x+m=0 has a=1, b=¡ 2 , and c=m
) ¢=b^2 ¡ 4 ac
=(¡2)^2 ¡4(1)(m)
=4¡ 4 m
a For a repeated root
¢=0
) 4 ¡ 4 m=0
) 4=4m
) m=1

b For 2 distinct real roots
¢> 0
) 4 ¡ 4 m> 0
) ¡ 4 m>¡ 4
) m< 1

c For no real roots
¢< 0
) 4 ¡ 4 m< 0
) ¡ 4 m<¡ 4
) m> 1

C The discriminant of a quadratic


4037 Cambridge
cyan magenta yellow black Additional Mathematics

(^05255075950525507595)
100 100
(^05255075950525507595)
100 100
Y:\HAESE\CAM4037\CamAdd_03\073CamAdd_03.cdr Thursday, 19 December 2013 3:18:36 PM GR8GREG

Free download pdf